Abstract:Research in vision and language has made considerable progress thanks to benchmarks such as COCO. COCO captions focused on unambiguous facts in English; ArtEmis introduced subjective emotions and ArtELingo introduced some multilinguality (Chinese and Arabic). However we believe there should be more multilinguality. Hence, we present ArtELingo-28, a vision-language benchmark that spans $\textbf{28}$ languages and encompasses approximately $\textbf{200,000}$ annotations ($\textbf{140}$ annotations per image). Traditionally, vision research focused on unambiguous class labels, whereas ArtELingo-28 emphasizes diversity of opinions over languages and cultures. The challenge is to build machine learning systems that assign emotional captions to images. Baseline results will be presented for three novel conditions: Zero-Shot, Few-Shot and One-vs-All Zero-Shot. We find that cross-lingual transfer is more successful for culturally-related languages. Data and code are provided at www.artelingo.org.
Abstract:Accurate recognition of human emotions is a crucial challenge in affective computing and human-robot interaction (HRI). Emotional states play a vital role in shaping behaviors, decisions, and social interactions. However, emotional expressions can be influenced by contextual factors, leading to misinterpretations if context is not considered. Multimodal fusion, combining modalities like facial expressions, speech, and physiological signals, has shown promise in improving affect recognition. This paper proposes a transformer-based multimodal fusion approach that leverages facial thermal data, facial action units, and textual context information for context-aware emotion recognition. We explore modality-specific encoders to learn tailored representations, which are then fused using additive fusion and processed by a shared transformer encoder to capture temporal dependencies and interactions. The proposed method is evaluated on a dataset collected from participants engaged in a tangible tabletop Pacman game designed to induce various affective states. Our results demonstrate the effectiveness of incorporating contextual information and multimodal fusion for affective state recognition.
Abstract:The increasing reliance on online recruitment platforms coupled with the adoption of AI technologies has highlighted the critical need for efficient resume classification methods. However, challenges such as small datasets, lack of standardized resume templates, and privacy concerns hinder the accuracy and effectiveness of existing classification models. In this work, we address these challenges by presenting a comprehensive approach to resume classification. We curated a large-scale dataset of 13,389 resumes from diverse sources and employed Large Language Models (LLMs) such as BERT and Gemma1.1 2B for classification. Our results demonstrate significant improvements over traditional machine learning approaches, with our best model achieving a top-1 accuracy of 92\% and a top-5 accuracy of 97.5\%. These findings underscore the importance of dataset quality and advanced model architectures in enhancing the accuracy and robustness of resume classification systems, thus advancing the field of online recruitment practices.
Abstract:This study thoroughly investigates how well deep learning models can recognize Arabic handwritten text for person biometric identification. It compares three advanced architectures -- ResNet50, MobileNetV2, and EfficientNetB7 -- using three widely recognized datasets: AHAWP, Khatt, and LAMIS-MSHD. Results show that EfficientNetB7 outperforms the others, achieving test accuracies of 98.57\%, 99.15\%, and 99.79\% on AHAWP, Khatt, and LAMIS-MSHD datasets, respectively. EfficientNetB7's exceptional performance is credited to its innovative techniques, including compound scaling, depth-wise separable convolutions, and squeeze-and-excitation blocks. These features allow the model to extract more abstract and distinctive features from handwritten text images. The study's findings hold significant implications for enhancing identity verification and authentication systems, highlighting the potential of deep learning in Arabic handwritten text recognition for person biometric identification.
Abstract:Biometric identification is a reliable method to verify individuals based on their unique physical or behavioral traits, offering a secure alternative to traditional methods like passwords or PINs. This study focuses on ear biometric identification, exploiting its distinctive features for enhanced accuracy, reliability, and usability. While past studies typically investigate face recognition and fingerprint analysis, our research demonstrates the effectiveness of ear biometrics in overcoming limitations such as variations in facial expressions and lighting conditions. We utilized two datasets: AMI (700 images from 100 individuals) and EarNV1.0 (28,412 images from 164 individuals). To improve the accuracy and robustness of our ear biometric identification system, we applied various techniques including data preprocessing and augmentation. Our models achieved a testing accuracy of 99.35% on the AMI Dataset and 98.1% on the EarNV1.0 dataset, showcasing the effectiveness of our approach in precisely identifying individuals based on ear biometric characteristics.
Abstract:We propose and study a realistic Continual Learning (CL) setting where learning algorithms are granted a restricted computational budget per time step while training. We apply this setting to large-scale semi-supervised Continual Learning scenarios with sparse label rates. Previous proficient CL methods perform very poorly in this challenging setting. Overfitting to the sparse labeled data and insufficient computational budget are the two main culprits for such a poor performance. Our new setting encourages learning methods to effectively and efficiently utilize the unlabeled data during training. To that end, we propose a simple but highly effective baseline, DietCL, which utilizes both unlabeled and labeled data jointly. DietCL meticulously allocates computational budget for both types of data. We validate our baseline, at scale, on several datasets, e.g., CLOC, ImageNet10K, and CGLM, under constraint budget setups. DietCL outperforms, by a large margin, all existing supervised CL algorithms as well as more recent continual semi-supervised methods. Our extensive analysis and ablations demonstrate that DietCL is stable under a full spectrum of label sparsity, computational budget, and various other ablations.
Abstract:This study presents AraSpider, the first Arabic version of the Spider dataset, aimed at improving natural language processing (NLP) in the Arabic-speaking community. Four multilingual translation models were tested for their effectiveness in translating English to Arabic. Additionally, two models were assessed for their ability to generate SQL queries from Arabic text. The results showed that using back translation significantly improved the performance of both ChatGPT 3.5 and SQLCoder models, which are considered top performers on the Spider dataset. Notably, ChatGPT 3.5 demonstrated high-quality translation, while SQLCoder excelled in text-to-SQL tasks. The study underscores the importance of incorporating contextual schema and employing back translation strategies to enhance model performance in Arabic NLP tasks. Moreover, the provision of detailed methodologies for reproducibility and translation of the dataset into other languages highlights the research's commitment to promoting transparency and collaborative knowledge sharing in the field. Overall, these contributions advance NLP research, empower Arabic-speaking researchers, and enrich the global discourse on language comprehension and database interrogation.
Abstract:Discovering the creative potentials of a random signal to various artistic expressions in aesthetic and conceptual richness is a ground for the recent success of generative machine learning as a way of art creation. To understand the new artistic medium better, we conduct a comprehensive analysis to position AI-generated art within the context of human art heritage. Our comparative analysis is based on an extensive dataset, dubbed ``ArtConstellation,'' consisting of annotations about art principles, likability, and emotions for 6,000 WikiArt and 3,200 AI-generated artworks. After training various state-of-the-art generative models, art samples are produced and compared with WikiArt data on the last hidden layer of a deep-CNN trained for style classification. We actively examined the various art principles to interpret the neural representations and used them to drive the comparative knowledge about human and AI-generated art. A key finding in the semantic analysis is that AI-generated artworks are visually related to the principle concepts for modern period art made in 1800-2000. In addition, through Out-Of-Distribution (OOD) and In-Distribution (ID) detection in CLIP space, we find that AI-generated artworks are ID to human art when they depict landscapes and geometric abstract figures, while detected as OOD when the machine art consists of deformed and twisted figures. We observe that machine-generated art is uniquely characterized by incomplete and reduced figuration. Lastly, we conducted a human survey about emotional experience. Color composition and familiar subjects are the key factors of likability and emotions in art appreciation. We propose our whole methodologies and collected dataset as our analytical framework to contrast human and AI-generated art, which we refer to as ``ArtNeuralConstellation''. Code is available at: https://github.com/faixan-khan/ArtNeuralConstellation
Abstract:This paper introduces ArtELingo, a new benchmark and dataset, designed to encourage work on diversity across languages and cultures. Following ArtEmis, a collection of 80k artworks from WikiArt with 0.45M emotion labels and English-only captions, ArtELingo adds another 0.79M annotations in Arabic and Chinese, plus 4.8K in Spanish to evaluate "cultural-transfer" performance. More than 51K artworks have 5 annotations or more in 3 languages. This diversity makes it possible to study similarities and differences across languages and cultures. Further, we investigate captioning tasks, and find diversity improves the performance of baseline models. ArtELingo is publicly available at https://www.artelingo.org/ with standard splits and baseline models. We hope our work will help ease future research on multilinguality and culturally-aware AI.
Abstract:Datasets that capture the connection between vision, language, and affection are limited, causing a lack of understanding of the emotional aspect of human intelligence. As a step in this direction, the ArtEmis dataset was recently introduced as a large-scale dataset of emotional reactions to images along with language explanations of these chosen emotions. We observed a significant emotional bias towards instance-rich emotions, making trained neural speakers less accurate in describing under-represented emotions. We show that collecting new data, in the same way, is not effective in mitigating this emotional bias. To remedy this problem, we propose a contrastive data collection approach to balance ArtEmis with a new complementary dataset such that a pair of similar images have contrasting emotions (one positive and one negative). We collected 260,533 instances using the proposed method, we combine them with ArtEmis, creating a second iteration of the dataset. The new combined dataset, dubbed ArtEmis v2.0, has a balanced distribution of emotions with explanations revealing more fine details in the associated painting. Our experiments show that neural speakers trained on the new dataset improve CIDEr and METEOR evaluation metrics by 20% and 7%, respectively, compared to the biased dataset. Finally, we also show that the performance per emotion of neural speakers is improved across all the emotion categories, significantly on under-represented emotions. The collected dataset and code are available at https://artemisdataset-v2.org.