Abstract:Social media posts provide valuable insight into the narrative of users and their intentions, including providing an opportunity to automatically model whether a social media user is depressed or not. The challenge lies in faithfully modelling user narratives from their online social media posts, which could potentially be useful in several different applications. We have developed a novel and effective model called \texttt{NarrationDep}, which focuses on detecting narratives associated with depression. By analyzing a user's tweets, \texttt{NarrationDep} accurately identifies crucial narratives. \texttt{NarrationDep} is a deep learning framework that jointly models individual user tweet representations and clusters of users' tweets. As a result, \texttt{NarrationDep} is characterized by a novel two-layer deep learning model: the first layer models using social media text posts, and the second layer learns semantic representations of tweets associated with a cluster. To faithfully model these cluster representations, the second layer incorporates a novel component that hierarchically learns from users' posts. The results demonstrate that our framework outperforms other comparative models including recently developed models on a variety of datasets.
Abstract:The growing capabilities of AI raise questions about their trustworthiness in healthcare, particularly due to opaque decision-making and limited data availability. This paper proposes a novel approach to address these challenges, introducing a Bayesian Monte Carlo Dropout model with kernel modelling. Our model is designed to enhance reliability on small medical datasets, a crucial barrier to the wider adoption of AI in healthcare. This model leverages existing language models for improved effectiveness and seamlessly integrates with current workflows. We demonstrate significant improvements in reliability, even with limited data, offering a promising step towards building trust in AI-driven medical predictions and unlocking its potential to improve patient care.
Abstract:Predicting legal judgments with reliable confidence is paramount for responsible legal AI applications. While transformer-based deep neural networks (DNNs) like BERT have demonstrated promise in legal tasks, accurately assessing their prediction confidence remains crucial. We present a novel Bayesian approach called BayesJudge that harnesses the synergy between deep learning and deep Gaussian Processes to quantify uncertainty through Bayesian kernel Monte Carlo dropout. Our method leverages informative priors and flexible data modelling via kernels, surpassing existing methods in both predictive accuracy and confidence estimation as indicated through brier score. Extensive evaluations of public legal datasets showcase our model's superior performance across diverse tasks. We also introduce an optimal solution to automate the scrutiny of unreliable predictions, resulting in a significant increase in the accuracy of the model's predictions by up to 27\%. By empowering judges and legal professionals with more reliable information, our work paves the way for trustworthy and transparent legal AI applications that facilitate informed decisions grounded in both knowledge and quantified uncertainty.
Abstract:Language models such as Bidirectional Encoder Representations from Transformers (BERT) have been very effective in various Natural Language Processing (NLP) and text mining tasks including text classification. However, some tasks still pose challenges for these models, including text classification with limited labels. This can result in a cold-start problem. Although some approaches have attempted to address this problem through single-stage clustering as an intermediate training step coupled with a pre-trained language model, which generates pseudo-labels to improve classification, these methods are often error-prone due to the limitations of the clustering algorithms. To overcome this, we have developed a novel two-stage intermediate clustering with subsequent fine-tuning that models the pseudo-labels reliably, resulting in reduced prediction errors. The key novelty in our model, IDoFew, is that the two-stage clustering coupled with two different clustering algorithms helps exploit the advantages of the complementary algorithms that reduce the errors in generating reliable pseudo-labels for fine-tuning. Our approach has shown significant improvements compared to strong comparative models.
Abstract:Contextualised word vectors obtained via pre-trained language models encode a variety of knowledge that has already been exploited in applications. Complementary to these language models are probabilistic topic models that learn thematic patterns from the text. Recent work has demonstrated that conducting clustering on the word-level contextual representations from a language model emulates word clusters that are discovered in latent topics of words from Latent Dirichlet Allocation. The important question is how such topical word clusters are automatically formed, through clustering, in the language model when it has not been explicitly designed to model latent topics. To address this question, we design different probe experiments. Using BERT and DistilBERT, we find that the attention framework plays a key role in modelling such word topic clusters. We strongly believe that our work paves way for further research into the relationships between probabilistic topic models and pre-trained language models.
Abstract:Predicting contextualised engagement in videos is a long-standing problem that has been popularly attempted by exploiting the number of views or the associated likes using different computational methods. The recent decade has seen a boom in online learning resources, and during the pandemic, there has been an exponential rise of online teaching videos without much quality control. The quality of the content could be improved if the creators could get constructive feedback on their content. Employing an army of domain expert volunteers to provide feedback on the videos might not scale. As a result, there has been a steep rise in developing computational methods to predict a user engagement score that is indicative of some form of possible user engagement, i.e., to what level a user would tend to engage with the content. A drawback in current methods is that they model various features separately, in a cascaded approach, that is prone to error propagation. Besides, most of them do not provide crucial explanations on how the creator could improve their content. In this paper, we have proposed a new unified model, CLUE for the educational domain, which learns from the features extracted from freely available public online teaching videos and provides explainable feedback on the video along with a user engagement score. Given the complexity of the task, our unified framework employs different pre-trained models working together as an ensemble of classifiers. Our model exploits various multi-modal features to model the complexity of language, context agnostic information, textual emotion of the delivered content, animation, speaker's pitch and speech emotions. Under a transfer learning setup, the overall model, in the unified space, is fine-tuned for downstream applications.
Abstract:Multi-label few-shot image classification (ML-FSIC) is the task of assigning descriptive labels to previously unseen images, based on a small number of training examples. A key feature of the multi-label setting is that images often have multiple labels, which typically refer to different regions of the image. When estimating prototypes, in a metric-based setting, it is thus important to determine which regions are relevant for which labels, but the limited amount of training data makes this highly challenging. As a solution, in this paper we propose to use word embeddings as a form of prior knowledge about the meaning of the labels. In particular, visual prototypes are obtained by aggregating the local feature maps of the support images, using an attention mechanism that relies on the label embeddings. As an important advantage, our model can infer prototypes for unseen labels without the need for fine-tuning any model parameters, which demonstrates its strong generalization abilities. Experiments on COCO and PASCAL VOC furthermore show that our model substantially improves the current state-of-the-art.
Abstract:Twitter is currently a popular online social media platform which allows users to share their user-generated content. This publicly-generated user data is also crucial to healthcare technologies because the discovered patterns would hugely benefit them in several ways. One of the applications is in automatically discovering mental health problems, e.g., depression. Previous studies to automatically detect a depressed user on online social media have largely relied upon the user behaviour and their linguistic patterns including user's social interactions. The downside is that these models are trained on several irrelevant content which might not be crucial towards detecting a depressed user. Besides, these content have a negative impact on the overall efficiency and effectiveness of the model. To overcome the shortcomings in the existing automatic depression detection methods, we propose a novel computational framework for automatic depression detection that initially selects relevant content through a hybrid extractive and abstractive summarization strategy on the sequence of all user tweets leading to a more fine-grained and relevant content. The content then goes to our novel deep learning framework comprising of a unified learning machinery comprising of Convolutional Neural Network (CNN) coupled with attention-enhanced Gated Recurrent Units (GRU) models leading to better empirical performance than existing strong baselines.
Abstract:Few-shot learning (FSL) is the task of learning to recognize previously unseen categories of images from a small number of training examples. This is a challenging task, as the available examples may not be enough to unambiguously determine which visual features are most characteristic of the considered categories. To alleviate this issue, we propose a method that additionally takes into account the names of the image classes. While the use of class names has already been explored in previous work, our approach differs in two key aspects. First, while previous work has aimed to directly predict visual prototypes from word embeddings, we found that better results can be obtained by treating visual and text-based prototypes separately. Second, we propose a simple strategy for learning class name embeddings using the BERT language model, which we found to substantially outperform the GloVe vectors that were used in previous work. We furthermore propose a strategy for dealing with the high dimensionality of these vectors, inspired by models for aligning cross-lingual word embeddings. We provide experiments on miniImageNet, CUB and tieredImageNet, showing that our approach consistently improves the state-of-the-art in metric-based FSL.
Abstract:The aim of few-shot learning (FSL) is to learn how to recognize image categories from a small number of training examples. A central challenge is that the available training examples are normally insufficient to determine which visual features are most characteristic of the considered categories. To address this challenge, we organize these visual features into facets, which intuitively group features of the same kind (e.g. features that are relevant to shape, color, or texture). This is motivated from the assumption that (i) the importance of each facet differs from category to category and (ii) it is possible to predict facet importance from a pre-trained embedding of the category names. In particular, we propose an adaptive similarity measure, relying on predicted facet importance weights for a given set of categories. This measure can be used in combination with a wide array of existing metric-based methods. Experiments on miniImageNet and CUB show that our approach improves the state-of-the-art in metric-based FSL.