Abstract:Traditional Multi-level Hierarchical Classification (MLHC) classifiers often rely on backbone models with $n$ independent output layers. This structure tends to overlook the hierarchical relationships between classes, leading to inconsistent predictions that violate the underlying taxonomy. Additionally, once a backbone architecture for an MLHC classifier is selected, adapting the model to accommodate new tasks can be challenging. For example, incorporating fairness to protect sensitive attributes within a hierarchical classifier necessitates complex adjustments to maintain the class hierarchy while enforcing fairness constraints. In this paper, we extend this concept to hierarchical classification by introducing a fair, model-agnostic layer designed to enforce taxonomy and optimize specific objectives, including consistency, fairness, and exact match. Our evaluations demonstrate that the proposed layer not only improves the fairness of predictions but also enforces the taxonomy, resulting in consistent predictions and superior performance. Compared to Large Language Models (LLMs) employing in-processing de-biasing techniques and models without any bias correction, our approach achieves better outcomes in both fairness and accuracy, making it particularly valuable in sectors like e-commerce, healthcare, and education, where predictive reliability is crucial.
Abstract:Missing data is a pervasive challenge spanning diverse data types, including tabular, sensor data, time-series, images and so on. Its origins are multifaceted, resulting in various missing mechanisms. Prior research in this field has predominantly revolved around the assumption of the Missing Completely At Random (MCAR) mechanism. However, Missing At Random (MAR) and Missing Not At Random (MNAR) mechanisms, though equally prevalent, have often remained underexplored despite their significant influence. This PhD project presents a comprehensive research agenda designed to investigate the implications of diverse missing data mechanisms. The principal aim is to devise robust methodologies capable of effectively handling missing data while accommodating the unique characteristics of MCAR, MAR, and MNAR mechanisms. By addressing these gaps, this research contributes to an enriched understanding of the challenges posed by missing data across various industries and data modalities. It seeks to provide practical solutions that enable the effective management of missing data, empowering researchers and practitioners to leverage incomplete datasets confidently.
Abstract:Recommendation systems are now an integral part of our daily lives. We rely on them for tasks such as discovering new movies, finding friends on social media, and connecting job seekers with relevant opportunities. Given their vital role, we must ensure these recommendations are free from societal stereotypes. Therefore, evaluating and addressing such biases in recommendation systems is crucial. Previous work evaluating the fairness of recommended items fails to capture certain nuances as they mainly focus on comparing performance metrics for different sensitive groups. In this paper, we introduce a set of comprehensive metrics for quantifying gender bias in recommendations. Specifically, we show the importance of evaluating fairness on a more granular level, which can be achieved using our metrics to capture gender bias using categories of recommended items like genres for movies. Furthermore, we show that employing a category-aware fairness metric as a regularization term along with the main recommendation loss during training can help effectively minimize bias in the models' output. We experiment on three real-world datasets, using five baseline models alongside two popular fairness-aware models, to show the effectiveness of our metrics in evaluating gender bias. Our metrics help provide an enhanced insight into bias in recommended items compared to previous metrics. Additionally, our results demonstrate how incorporating our regularization term significantly improves the fairness in recommendations for different categories without substantial degradation in overall recommendation performance.
Abstract:Multi-level Hierarchical Classification (MLHC) tackles the challenge of categorizing items within a complex, multi-layered class structure. However, traditional MLHC classifiers often rely on a backbone model with independent output layers, which tend to ignore the hierarchical relationships between classes. This oversight can lead to inconsistent predictions that violate the underlying taxonomy. Leveraging Large Language Models (LLMs), we propose a novel taxonomy-embedded transitional LLM-agnostic framework for multimodality classification. The cornerstone of this advancement is the ability of models to enforce consistency across hierarchical levels. Our evaluations on the MEP-3M dataset - a multi-modal e-commerce product dataset with various hierarchical levels - demonstrated a significant performance improvement compared to conventional LLM structures.
Abstract:Visual Question Answering (VQA) is an evolving research field aimed at enabling machines to answer questions about visual content by integrating image and language processing techniques such as feature extraction, object detection, text embedding, natural language understanding, and language generation. With the growth of multimodal data research, VQA has gained significant attention due to its broad applications, including interactive educational tools, medical image diagnosis, customer service, entertainment, and social media captioning. Additionally, VQA plays a vital role in assisting visually impaired individuals by generating descriptive content from images. This survey introduces a taxonomy of VQA architectures, categorizing them based on design choices and key components to facilitate comparative analysis and evaluation. We review major VQA approaches, focusing on deep learning-based methods, and explore the emerging field of Large Visual Language Models (LVLMs) that have demonstrated success in multimodal tasks like VQA. The paper further examines available datasets and evaluation metrics essential for measuring VQA system performance, followed by an exploration of real-world VQA applications. Finally, we highlight ongoing challenges and future directions in VQA research, presenting open questions and potential areas for further development. This survey serves as a comprehensive resource for researchers and practitioners interested in the latest advancements and future
Abstract:Visual Question Answering (VQA) has emerged as a promising area of research to develop AI-based systems for enabling interactive and immersive learning. Numerous VQA datasets have been introduced to facilitate various tasks, such as answering questions or identifying unanswerable ones. However, most of these datasets are constructed using real-world images, leaving the performance of existing models on cartoon images largely unexplored. Hence, in this paper, we present "SimpsonsVQA", a novel dataset for VQA derived from The Simpsons TV show, designed to promote inquiry-based learning. Our dataset is specifically designed to address not only the traditional VQA task but also to identify irrelevant questions related to images, as well as the reverse scenario where a user provides an answer to a question that the system must evaluate (e.g., as correct, incorrect, or ambiguous). It aims to cater to various visual applications, harnessing the visual content of "The Simpsons" to create engaging and informative interactive systems. SimpsonsVQA contains approximately 23K images, 166K QA pairs, and 500K judgments (https://simpsonsvqa.org). Our experiments show that current large vision-language models like ChatGPT4o underperform in zero-shot settings across all three tasks, highlighting the dataset's value for improving model performance on cartoon images. We anticipate that SimpsonsVQA will inspire further research, innovation, and advancements in inquiry-based learning VQA.
Abstract:Data-driven Artificial Intelligence (AI) systems trained using Machine Learning (ML) are shaping an ever-increasing (in size and importance) portion of our lives, including, but not limited to, recommendation systems, autonomous driving technologies, healthcare diagnostics, financial services, and personalized marketing. On the one hand, the outsized influence of these systems imposes a high standard of quality, particularly in the data used to train them. On the other hand, establishing and maintaining standards of Data Quality (DQ) becomes more challenging due to the proliferation of Edge Computing and Internet of Things devices, along with their increasing adoption for training and deploying ML models. The nature of the edge environment -- characterized by limited resources, decentralized data storage, and processing -- exacerbates data-related issues, making them more frequent, severe, and difficult to detect and mitigate. From these observations, it follows that DQ research for edge ML is a critical and urgent exploration track for the safety and robust usefulness of present and future AI systems. Despite this fact, DQ research for edge ML is still in its infancy. The literature on this subject remains fragmented and scattered across different research communities, with no comprehensive survey to date. Hence, this paper aims to fill this gap by providing a global view of the existing literature from multiple disciplines that can be grouped under the umbrella of DQ for edge ML. Specifically, we present a tentative definition of data quality in Edge computing, which we use to establish a set of DQ dimensions. We explore each dimension in detail, including existing solutions for mitigation.
Abstract:In this era of advanced manufacturing, it's now more crucial than ever to diagnose machine faults as early as possible to guarantee their safe and efficient operation. With the massive surge in industrial big data and advancement in sensing and computational technologies, data-driven Machinery Fault Diagnosis (MFD) solutions based on machine/deep learning approaches have been used ubiquitously in manufacturing. Timely and accurately identifying faulty machine signals is vital in industrial applications for which many relevant solutions have been proposed and are reviewed in many articles. Despite the availability of numerous solutions and reviews on MFD, existing works often lack several aspects. Most of the available literature has limited applicability in a wide range of manufacturing settings due to their concentration on a particular type of equipment or method of analysis. Additionally, discussions regarding the challenges associated with implementing data-driven approaches, such as dealing with noisy data, selecting appropriate features, and adapting models to accommodate new or unforeseen faults, are often superficial or completely overlooked. Thus, this survey provides a comprehensive review of the articles using different types of machine learning approaches for the detection and diagnosis of various types of machinery faults, highlights their strengths and limitations, provides a review of the methods used for condition-based analyses, comprehensively discusses the available machinery fault datasets, introduces future researchers to the possible challenges they have to encounter while using these approaches for MFD and recommends the probable solutions to mitigate those problems. The future research prospects are also pointed out for a better understanding of the field. We believe this article will help researchers and contribute to the further development of the field.
Abstract:Missing data poses a significant challenge in data science, affecting decision-making processes and outcomes. Understanding what missing data is, how it occurs, and why it is crucial to handle it appropriately is paramount when working with real-world data, especially in tabular data, one of the most commonly used data types in the real world. Three missing mechanisms are defined in the literature: Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR), each presenting unique challenges in imputation. Most existing work are focused on MCAR that is relatively easy to handle. The special missing mechanisms of MNAR and MAR are less explored and understood. This article reviews existing literature on handling missing values. It compares and contrasts existing methods in terms of their ability to handle different missing mechanisms and data types. It identifies research gap in the existing literature and lays out potential directions for future research in the field. The information in this review will help data analysts and researchers to adopt and promote good practices for handling missing data in real-world problems.
Abstract:Artificial Intelligence (AI) models are now being utilized in all facets of our lives such as healthcare, education and employment. Since they are used in numerous sensitive environments and make decisions that can be life altering, potential biased outcomes are a pressing matter. Developers should ensure that such models don't manifest any unexpected discriminatory practices like partiality for certain genders, ethnicities or disabled people. With the ubiquitous dissemination of AI systems, researchers and practitioners are becoming more aware of unfair models and are bound to mitigate bias in them. Significant research has been conducted in addressing such issues to ensure models don't intentionally or unintentionally perpetuate bias. This survey offers a synopsis of the different ways researchers have promoted fairness in AI systems. We explore the different definitions of fairness existing in the current literature. We create a comprehensive taxonomy by categorizing different types of bias and investigate cases of biased AI in different application domains. A thorough study is conducted of the approaches and techniques employed by researchers to mitigate bias in AI models. Moreover, we also delve into the impact of biased models on user experience and the ethical considerations to contemplate when developing and deploying such models. We hope this survey helps researchers and practitioners understand the intricate details of fairness and bias in AI systems. By sharing this thorough survey, we aim to promote additional discourse in the domain of equitable and responsible AI.