Abstract:Traditional Multi-level Hierarchical Classification (MLHC) classifiers often rely on backbone models with $n$ independent output layers. This structure tends to overlook the hierarchical relationships between classes, leading to inconsistent predictions that violate the underlying taxonomy. Additionally, once a backbone architecture for an MLHC classifier is selected, adapting the model to accommodate new tasks can be challenging. For example, incorporating fairness to protect sensitive attributes within a hierarchical classifier necessitates complex adjustments to maintain the class hierarchy while enforcing fairness constraints. In this paper, we extend this concept to hierarchical classification by introducing a fair, model-agnostic layer designed to enforce taxonomy and optimize specific objectives, including consistency, fairness, and exact match. Our evaluations demonstrate that the proposed layer not only improves the fairness of predictions but also enforces the taxonomy, resulting in consistent predictions and superior performance. Compared to Large Language Models (LLMs) employing in-processing de-biasing techniques and models without any bias correction, our approach achieves better outcomes in both fairness and accuracy, making it particularly valuable in sectors like e-commerce, healthcare, and education, where predictive reliability is crucial.
Abstract:Graph Retrieval-Augmented Generation (GraphRAG) has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge. By leveraging Knowledge Graphs (KGs), GraphRAG improves information retrieval for complex reasoning tasks, providing more precise and comprehensive retrieval and generating more accurate responses to QAs. However, most RAG methods fall short in addressing multi-step reasoning, particularly when both information extraction and inference are necessary. To address this limitation, this paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning to improve LLMs' ability to handle queries involving temporal and logical dependencies. Through iterative retrieval steps, KG-IRAG incrementally gathers relevant data from external KGs, enabling step-by-step reasoning. The proposed approach is particularly suited for scenarios where reasoning is required alongside dynamic temporal data extraction, such as determining optimal travel times based on weather conditions or traffic patterns. Experimental results show that KG-IRAG improves accuracy in complex reasoning tasks by effectively integrating external knowledge with iterative, logic-based retrieval. Additionally, three new datasets: weatherQA-Irish, weatherQA-Sydney, and trafficQA-TFNSW, are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
Abstract:Multi-level Hierarchical Classification (MLHC) tackles the challenge of categorizing items within a complex, multi-layered class structure. However, traditional MLHC classifiers often rely on a backbone model with independent output layers, which tend to ignore the hierarchical relationships between classes. This oversight can lead to inconsistent predictions that violate the underlying taxonomy. Leveraging Large Language Models (LLMs), we propose a novel taxonomy-embedded transitional LLM-agnostic framework for multimodality classification. The cornerstone of this advancement is the ability of models to enforce consistency across hierarchical levels. Our evaluations on the MEP-3M dataset - a multi-modal e-commerce product dataset with various hierarchical levels - demonstrated a significant performance improvement compared to conventional LLM structures.
Abstract:Visual Question Answering (VQA) is an evolving research field aimed at enabling machines to answer questions about visual content by integrating image and language processing techniques such as feature extraction, object detection, text embedding, natural language understanding, and language generation. With the growth of multimodal data research, VQA has gained significant attention due to its broad applications, including interactive educational tools, medical image diagnosis, customer service, entertainment, and social media captioning. Additionally, VQA plays a vital role in assisting visually impaired individuals by generating descriptive content from images. This survey introduces a taxonomy of VQA architectures, categorizing them based on design choices and key components to facilitate comparative analysis and evaluation. We review major VQA approaches, focusing on deep learning-based methods, and explore the emerging field of Large Visual Language Models (LVLMs) that have demonstrated success in multimodal tasks like VQA. The paper further examines available datasets and evaluation metrics essential for measuring VQA system performance, followed by an exploration of real-world VQA applications. Finally, we highlight ongoing challenges and future directions in VQA research, presenting open questions and potential areas for further development. This survey serves as a comprehensive resource for researchers and practitioners interested in the latest advancements and future
Abstract:Visual Question Answering (VQA) has emerged as a promising area of research to develop AI-based systems for enabling interactive and immersive learning. Numerous VQA datasets have been introduced to facilitate various tasks, such as answering questions or identifying unanswerable ones. However, most of these datasets are constructed using real-world images, leaving the performance of existing models on cartoon images largely unexplored. Hence, in this paper, we present "SimpsonsVQA", a novel dataset for VQA derived from The Simpsons TV show, designed to promote inquiry-based learning. Our dataset is specifically designed to address not only the traditional VQA task but also to identify irrelevant questions related to images, as well as the reverse scenario where a user provides an answer to a question that the system must evaluate (e.g., as correct, incorrect, or ambiguous). It aims to cater to various visual applications, harnessing the visual content of "The Simpsons" to create engaging and informative interactive systems. SimpsonsVQA contains approximately 23K images, 166K QA pairs, and 500K judgments (https://simpsonsvqa.org). Our experiments show that current large vision-language models like ChatGPT4o underperform in zero-shot settings across all three tasks, highlighting the dataset's value for improving model performance on cartoon images. We anticipate that SimpsonsVQA will inspire further research, innovation, and advancements in inquiry-based learning VQA.
Abstract:Synthetic data has gained attention for training large language models, but poor-quality data can harm performance (see, e.g., Shumailov et al. (2023); Seddik et al. (2024)). A potential solution is data pruning, which retains only high-quality data based on a score function (human or machine feedback). Previous work Feng et al. (2024) analyzed models trained on synthetic data as sample size increases. We extend this by using random matrix theory to derive the performance of a binary classifier trained on a mix of real and pruned synthetic data in a high dimensional setting. Our findings identify conditions where synthetic data could improve performance, focusing on the quality of the generative model and verification strategy. We also show a smooth phase transition in synthetic label noise, contrasting with prior sharp behavior in infinite sample limits. Experiments with toy models and large language models validate our theoretical results.
Abstract:In this technical report, we present Falcon Mamba 7B, a new base large language model based on the novel Mamba architecture. Falcon Mamba 7B is trained on 5.8 trillion tokens with carefully selected data mixtures. As a pure Mamba-based model, Falcon Mamba 7B surpasses leading open-weight models based on Transformers, such as Mistral 7B, Llama3.1 8B, and Falcon2 11B. It is on par with Gemma 7B and outperforms models with different architecture designs, such as RecurrentGemma 9B and RWKV-v6 Finch 7B/14B. Currently, Falcon Mamba 7B is the best-performing Mamba model in the literature at this scale, surpassing both existing Mamba and hybrid Mamba-Transformer models, according to the Open LLM Leaderboard. Due to its architecture, Falcon Mamba 7B is significantly faster at inference and requires substantially less memory for long sequence generation. Despite recent studies suggesting that hybrid Mamba-Transformer models outperform pure architecture designs, we demonstrate that even the pure Mamba design can achieve similar, or even superior results compared to the Transformer and hybrid designs. We make the weights of our implementation of Falcon Mamba 7B publicly available on https://huggingface.co/tiiuae/falcon-mamba-7b, under a permissive license.
Abstract:We demonstrate that preference optimization methods can effectively enhance LLM safety. Applying various alignment techniques to the Falcon 11B model using safety datasets, we achieve a significant boost in global safety score (from $57.64\%$ to $99.90\%$) as measured by LlamaGuard 3 8B, competing with state-of-the-art models. On toxicity benchmarks, average scores in adversarial settings dropped from over $0.6$ to less than $0.07$. However, this safety improvement comes at the cost of reduced general capabilities, particularly in math, suggesting a trade-off. We identify noise contrastive alignment (Safe-NCA) as an optimal method for balancing safety and performance. Our study ultimately shows that alignment techniques can be sufficient for building safe and robust models.
Abstract:We introduce Falcon2-11B, a foundation model trained on over five trillion tokens, and its multimodal counterpart, Falcon2-11B-vlm, which is a vision-to-text model. We report our findings during the training of the Falcon2-11B which follows a multi-stage approach where the early stages are distinguished by their context length and a final stage where we use a curated, high-quality dataset. Additionally, we report the effect of doubling the batch size mid-training and how training loss spikes are affected by the learning rate. The downstream performance of the foundation model is evaluated on established benchmarks, including multilingual and code datasets. The foundation model shows strong generalization across all the tasks which makes it suitable for downstream finetuning use cases. For the vision language model, we report the performance on several benchmarks and show that our model achieves a higher average score compared to open-source models of similar size. The model weights and code of both Falcon2-11B and Falcon2-11B-vlm are made available under a permissive license.
Abstract:Preference optimization methods have been successfully applied to improve not only the alignment of large language models (LLMs) with human values, but also specific natural language tasks such as summarization and stylistic continuations. This paper proposes using preference optimization methods on Chain-of-Thought steps in order to improve the reasoning performances of language models. While the chosen answers are obtained from datasets that include reasoning traces, we propose two complementary schemes for generating rejected answers: digit corruption, and weak LLM prompting. Our approach leads to increased accuracy on the GSM8K, AQuA-RAT, and ARC benchmarks for Falcon2-11B and Mistral-7B. For example, the approach can lead to up to a relative 8.47% increase in accuracy on the GSM8K benchmark without any extra annotations. This work suggests that spending resources on creating more datasets of reasoning traces would further boost LLM performances on informal reasoning tasks.