Abstract:To address the time-consuming and computationally intensive issues of traditional ART algorithms for flame combustion diagnosis, inspired by flame simulation technology, we propose a novel representation method for flames. By modeling the luminous process of flames and utilizing 2D projection images for supervision, our experimental validation shows that this model achieves an average structural similarity index of 0.96 between actual images and predicted 2D projections, along with a Peak Signal-to-Noise Ratio of 39.05. Additionally, it saves approximately 34 times the computation time and about 10 times the memory compared to traditional algorithms.
Abstract:Addressing the challenges of irregularity and concept drift in streaming time series is crucial in real-world predictive modelling. Previous studies in time series continual learning often propose models that require buffering of long sequences, potentially restricting the responsiveness of the inference system. Moreover, these models are typically designed for regularly sampled data, an unrealistic assumption in real-world scenarios. This paper introduces ODEStream, a novel buffer-free continual learning framework that incorporates a temporal isolation layer that integrates temporal dependencies within the data. Simultaneously, it leverages the capability of neural ordinary differential equations to process irregular sequences and generate a continuous data representation, enabling seamless adaptation to changing dynamics in a data streaming scenario. Our approach focuses on learning how the dynamics and distribution of historical data change with time, facilitating the direct processing of streaming sequences. Evaluations on benchmark real-world datasets demonstrate that ODEStream outperforms the state-of-the-art online learning and streaming analysis baselines, providing accurate predictions over extended periods while minimising performance degradation over time by learning how the sequence dynamics change.
Abstract:Traditional POI recommendation systems often lack transparency, interpretability, and scrutability due to their reliance on dense vector-based user embeddings. Furthermore, the cold-start problem -- where systems have insufficient data for new users -- limits their ability to generate accurate recommendations. Existing methods often address this by leveraging similar trajectories from other users, but this approach can be computationally expensive and increases the context length for LLM-based methods, making them difficult to scale. To address these limitations, we propose a method that generates natural language (NL) user profiles from large-scale, location-based social network (LBSN) check-ins, utilizing robust personality assessments and behavioral theories. These NL profiles capture user preferences, routines, and behaviors, improving POI prediction accuracy while offering enhanced transparency. By incorporating NL profiles as system prompts to LLMs, our approach reduces reliance on extensive historical data, while remaining flexible, easily updated, and computationally efficient. Our method is not only competitive with other LLM-based and complex agentic frameworks but is also more scalable for real-world scenarios and on-device POI recommendations. Results demonstrate that our approach consistently outperforms baseline methods, offering a more interpretable and resource-efficient solution for POI recommendation systems. Our source code is available at: \url{https://github.com/w11wo/GenUP}.
Abstract:In this work, we bridge the gap between wearable sensor technology and personalized AI assistants by enabling Large Language Models (LLMs) to understand time-series tasks like human activity recognition (HAR). Despite the strong reasoning and generalization capabilities of LLMs, leveraging them for sensor data tasks remains largely unexplored. This gap stems from challenges like the lack of semantic context in time-series data, computational limitations, and LLMs' difficulty processing numerical inputs. To address these issues, we introduce SensorLLM, a two-stage framework to unlock LLMs' potential for sensor data tasks. In the Sensor-Language Alignment Stage, we introduce special tokens for each sensor channel and automatically generate trend-descriptive text to align sensor data with textual inputs, enabling SensorLLM to capture numerical changes, channel-specific information, and sensor data of varying lengths-capabilities that existing LLMs typically struggle with, all without the need for human annotations. Next, in Task-Aware Tuning Stage, we refine the model for HAR classification using the frozen LLM and alignment module, achieving performance on par with or surpassing state-of-the-art models. We further demonstrate that SensorLLM evolves into an effective sensor learner, reasoner, and classifier through Sensor-Language Alignment, enabling it to generalize across diverse datasets for HAR tasks. We strongly believe our work lays the stepstone for future time-series and text alignment research, offering a path toward foundation models for sensor data.
Abstract:Occupation information can be utilized by digital assistants to provide occupation-specific personalized task support, including interruption management, task planning, and recommendations. Prior research in the digital workplace assistant domain requires users to input their occupation information for effective support. However, as many individuals switch between multiple occupations daily, current solutions falter without continuous user input. To address this, this study introduces WorkR, a framework that leverages passive sensing to capture pervasive signals from various task activities, addressing three challenges: the lack of a passive sensing architecture, personalization of occupation characteristics, and discovering latent relationships among occupation variables. We argue that signals from application usage, movements, social interactions, and the environment can inform a user's occupation. WorkR uses a Variational Autoencoder (VAE) to derive latent features for training models to infer occupations. Our experiments with an anonymized, context-rich activity and task log dataset demonstrate that our models can accurately infer occupations with more than 91% accuracy across six ISO occupation categories.
Abstract:Video language continual learning involves continuously adapting to information from video and text inputs, enhancing a model's ability to handle new tasks while retaining prior knowledge. This field is a relatively under-explored area, and establishing appropriate datasets is crucial for facilitating communication and research in this field. In this study, we present the first dedicated benchmark, ViLCo-Bench, designed to evaluate continual learning models across a range of video-text tasks. The dataset comprises ten-minute-long videos and corresponding language queries collected from publicly available datasets. Additionally, we introduce a novel memory-efficient framework that incorporates self-supervised learning and mimics long-term and short-term memory effects. This framework addresses challenges including memory complexity from long video clips, natural language complexity from open queries, and text-video misalignment. We posit that ViLCo-Bench, with greater complexity compared to existing continual learning benchmarks, would serve as a critical tool for exploring the video-language domain, extending beyond conventional class-incremental tasks, and addressing complex and limited annotation issues. The curated data, evaluations, and our novel method are available at https://github.com/cruiseresearchgroup/ViLCo .
Abstract:Buildings play a crucial role in human well-being, influencing occupant comfort, health, and safety. Additionally, they contribute significantly to global energy consumption, accounting for one-third of total energy usage, and carbon emissions. Optimizing building performance presents a vital opportunity to combat climate change and promote human flourishing. However, research in building analytics has been hampered by the lack of accessible, available, and comprehensive real-world datasets on multiple building operations. In this paper, we introduce the Building TimeSeries (BTS) dataset. Our dataset covers three buildings over a three-year period, comprising more than ten thousand timeseries data points with hundreds of unique ontologies. Moreover, the metadata is standardized using the Brick schema. To demonstrate the utility of this dataset, we performed benchmarks on two tasks: timeseries ontology classification and zero-shot forecasting. These tasks represent an essential initial step in addressing challenges related to interoperability in building analytics. Access to the dataset and the code used for benchmarking are available here: https://github.com/cruiseresearchgroup/DIEF_BTS .
Abstract:Training models on spatio-temporal (ST) data poses an open problem due to the complicated and diverse nature of the data itself, and it is challenging to ensure the model's performance directly trained on the original ST data. While limiting the variety of training data can make training easier, it can also lead to a lack of knowledge and information for the model, resulting in a decrease in performance. To address this challenge, we presented an innovative paradigm that incorporates three separate forms of curriculum learning specifically targeting from spatial, temporal, and quantile perspectives. Furthermore, our framework incorporates a stacking fusion module to combine diverse information from three types of curriculum learning, resulting in a strong and thorough learning process. We demonstrated the effectiveness of this framework with extensive empirical evaluations, highlighting its better performance in addressing complex ST challenges. We provided thorough ablation studies to investigate the effectiveness of our curriculum and to explain how it contributes to the improvement of learning efficiency on ST data.
Abstract:Traffic forecasting is crucial for smart cities and intelligent transportation initiatives, where deep learning has made significant progress in modeling complex spatio-temporal patterns in recent years. However, current public datasets have limitations in reflecting the ultra-dynamic nature of real-world scenarios, characterized by continuously evolving infrastructures, varying temporal distributions, and temporal gaps due to sensor downtimes or changes in traffic patterns. These limitations inevitably restrict the practical applicability of existing traffic forecasting datasets. To bridge this gap, we present XXLTraffic, the largest available public traffic dataset with the longest timespan and increasing number of sensor nodes over the multiple years observed in the data, curated to support research in ultra-dynamic forecasting. Our benchmark includes both typical time-series forecasting settings with hourly and daily aggregated data and novel configurations that introduce gaps and down-sample the training size to better simulate practical constraints. We anticipate the new XXLTraffic will provide a fresh perspective for the time-series and traffic forecasting communities. It would also offer a robust platform for developing and evaluating models designed to tackle ultra-dynamic and extremely long forecasting problems. Our dataset supplements existing spatio-temporal data resources and leads to new research directions in this domain.
Abstract:Trajectory similarity computation is an essential technique for analyzing moving patterns of spatial data across various applications such as traffic management, wildlife tracking, and location-based services. Modern methods often apply deep learning techniques to approximate heuristic metrics but struggle to learn more robust and generalized representations from the vast amounts of unlabeled trajectory data. Recent approaches focus on self-supervised learning methods such as contrastive learning, which have made significant advancements in trajectory representation learning. However, contrastive learning-based methods heavily depend on manually pre-defined data augmentation schemes, limiting the diversity of generated trajectories and resulting in learning from such variations in 2D Euclidean space, which prevents capturing high-level semantic variations. To address these limitations, we propose T-JEPA, a self-supervised trajectory similarity computation method employing Joint-Embedding Predictive Architecture (JEPA) to enhance trajectory representation learning. T-JEPA samples and predicts trajectory information in representation space, enabling the model to infer the missing components of trajectories at high-level semantics without relying on domain knowledge or manual effort. Extensive experiments conducted on three urban trajectory datasets and two Foursquare datasets demonstrate the effectiveness of T-JEPA in trajectory similarity computation.