Abstract:Traditional POI recommendation systems often lack transparency, interpretability, and scrutability due to their reliance on dense vector-based user embeddings. Furthermore, the cold-start problem -- where systems have insufficient data for new users -- limits their ability to generate accurate recommendations. Existing methods often address this by leveraging similar trajectories from other users, but this approach can be computationally expensive and increases the context length for LLM-based methods, making them difficult to scale. To address these limitations, we propose a method that generates natural language (NL) user profiles from large-scale, location-based social network (LBSN) check-ins, utilizing robust personality assessments and behavioral theories. These NL profiles capture user preferences, routines, and behaviors, improving POI prediction accuracy while offering enhanced transparency. By incorporating NL profiles as system prompts to LLMs, our approach reduces reliance on extensive historical data, while remaining flexible, easily updated, and computationally efficient. Our method is not only competitive with other LLM-based and complex agentic frameworks but is also more scalable for real-world scenarios and on-device POI recommendations. Results demonstrate that our approach consistently outperforms baseline methods, offering a more interpretable and resource-efficient solution for POI recommendation systems. Our source code is available at: \url{https://github.com/w11wo/GenUP}.
Abstract:Indonesia's linguistic landscape is remarkably diverse, encompassing over 700 languages and dialects, making it one of the world's most linguistically rich nations. This diversity, coupled with the widespread practice of code-switching and the presence of low-resource regional languages, presents unique challenges for modern pre-trained language models. In response to these challenges, we developed NusaBERT, building upon IndoBERT by incorporating vocabulary expansion and leveraging a diverse multilingual corpus that includes regional languages and dialects. Through rigorous evaluation across a range of benchmarks, NusaBERT demonstrates state-of-the-art performance in tasks involving multiple languages of Indonesia, paving the way for future natural language understanding research for under-represented languages.