Abstract:Incomplete data are common in real-world tabular applications, where numerical, categorical, and discrete attributes coexist within a single dataset. This heterogeneous structure presents significant challenges for existing diffusion-based imputation models, which typically assume a homogeneous feature space and rely on stochastic denoising trajectories. Such assumptions make it difficult to maintain conditional consistency, and they often lead to information collapse for categorical variables or instability when numerical variables require deterministic updates. These limitations indicate that a single diffusion process is insufficient for mixed-type tabular imputation. We propose a hybrid deterministic diffusion framework that separates heterogeneous features into two complementary generative channels. A continuous DDIM-based channel provides efficient and stable deterministic denoising for numerical variables, while a discrete latent-path diffusion channel, inspired by loopholing-based discrete diffusion, models categorical and discrete features without leaving their valid sample manifolds. The two channels are trained under a unified conditional imputation objective, enabling coherent reconstruction of mixed-type incomplete data. Extensive experiments on multiple real-world datasets show that the proposed framework achieves higher imputation accuracy, more stable sampling trajectories, and improved robustness across MCAR, MAR, and MNAR settings compared with existing diffusion-based and classical methods. These results demonstrate the importance of structure-aware diffusion processes for advancing deep learning approaches to incomplete tabular data.
Abstract:Missing data is a pervasive challenge spanning diverse data types, including tabular, sensor data, time-series, images and so on. Its origins are multifaceted, resulting in various missing mechanisms. Prior research in this field has predominantly revolved around the assumption of the Missing Completely At Random (MCAR) mechanism. However, Missing At Random (MAR) and Missing Not At Random (MNAR) mechanisms, though equally prevalent, have often remained underexplored despite their significant influence. This PhD project presents a comprehensive research agenda designed to investigate the implications of diverse missing data mechanisms. The principal aim is to devise robust methodologies capable of effectively handling missing data while accommodating the unique characteristics of MCAR, MAR, and MNAR mechanisms. By addressing these gaps, this research contributes to an enriched understanding of the challenges posed by missing data across various industries and data modalities. It seeks to provide practical solutions that enable the effective management of missing data, empowering researchers and practitioners to leverage incomplete datasets confidently.




Abstract:As E-commerce platforms face surging transactions during major shopping events like Black Friday, stress testing with synthesized data is crucial for resource planning. Most recent studies use Generative Adversarial Networks (GANs) to generate tabular data while ensuring privacy and machine learning utility. However, these methods overlook the computational demands of processing GAN-generated data, making them unsuitable for E-commerce stress testing. This thesis introduces a novel GAN-based approach incorporating query selectivity constraints, a key factor in database transaction processing. We integrate a pre-trained deep neural network to maintain selectivity consistency between real and synthetic data. Our method, tested on five real-world datasets, outperforms three state-of-the-art GANs and a VAE model, improving selectivity estimation accuracy by up to 20pct and machine learning utility by up to 6 pct.




Abstract:Missing data poses a significant challenge in data science, affecting decision-making processes and outcomes. Understanding what missing data is, how it occurs, and why it is crucial to handle it appropriately is paramount when working with real-world data, especially in tabular data, one of the most commonly used data types in the real world. Three missing mechanisms are defined in the literature: Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR), each presenting unique challenges in imputation. Most existing work are focused on MCAR that is relatively easy to handle. The special missing mechanisms of MNAR and MAR are less explored and understood. This article reviews existing literature on handling missing values. It compares and contrasts existing methods in terms of their ability to handle different missing mechanisms and data types. It identifies research gap in the existing literature and lays out potential directions for future research in the field. The information in this review will help data analysts and researchers to adopt and promote good practices for handling missing data in real-world problems.