Abstract:Although sign language recognition aids non-hearing-impaired understanding, many hearing-impaired individuals still rely on sign language alone due to limited literacy, underscoring the need for advanced sign language production and translation (SLP and SLT) systems. In the field of sign language production, the lack of adequate models and datasets restricts practical applications. Existing models face challenges in production accuracy and pose control, making it difficult to provide fluent sign language expressions across diverse scenarios. Additionally, data resources are scarce, particularly high-quality datasets with complete sign vocabulary and pose annotations. To address these issues, we introduce CNText2Sign and CNSign, comprehensive datasets to benchmark SLP and SLT, respectively, with CNText2Sign covering gloss and landmark mappings for SLP, and CNSign providing extensive video-to-text data for SLT. To improve the accuracy and applicability of sign language systems, we propose the AuraLLM and SignMST-C models. AuraLLM, incorporating LoRA and RAG techniques, achieves a BLEU-4 score of 50.41 on the CNText2Sign dataset, enabling precise control over gesture semantics and motion. SignMST-C employs self-supervised rapid motion video pretraining, achieving a BLEU-4 score of 31.03/32.08 on the PHOENIX2014-T benchmark, setting a new state-of-the-art. These models establish robust baselines for the datasets released for their respective tasks.
Abstract:The rapid development of the Internet has profoundly changed human life. Humans are increasingly expressing themselves and interacting with others on social media platforms. However, although artificial intelligence technology has been widely used in many aspects of life, its application in social media content creation is still blank. To solve this problem, we propose a new prompt word generation framework based on multi-modal information fusion, which combines multiple tasks including topic classification, sentiment analysis, scene recognition and keyword extraction to generate more comprehensive prompt words. Subsequently, we use a template containing a set of prompt words to guide ChatGPT to generate high-quality tweets. Furthermore, in the absence of effective and objective evaluation criteria in the field of content generation, we use the ChatGPT tool to evaluate the results generated by the algorithm, making large-scale evaluation of content generation algorithms possible. Evaluation results on extensive content generation demonstrate that our cue word generation framework generates higher quality content compared to manual methods and other cueing techniques, while topic classification, sentiment analysis, and scene recognition significantly enhance content clarity and its consistency with the image.
Abstract:This study intends to systematically disentangle pure logic reasoning and text understanding by investigating the contrast across abstract and contextualized logical problems from a comprehensive set of domains. We explore whether LLMs demonstrate genuine reasoning capabilities across various domains when the underlying logical structure remains constant. We focus on two main questions (1) Can abstract logical problems alone accurately benchmark an LLM's reasoning ability in real-world scenarios, disentangled from contextual support in practical settings? (2) Does fine-tuning LLMs on abstract logic problem generalize to contextualized logic problems and vice versa? To investigate these questions, we focus on standard propositional logic, specifically propositional deductive and abductive logic reasoning. In particular, we construct instantiated datasets for deductive and abductive reasoning with 4 levels of difficulty, encompassing 12 distinct categories or domains based on the categorization of Wikipedia. Our experiments aim to provide insights into disentangling context in logical reasoning and the true reasoning capabilities of LLMs and their generalization potential. The code and dataset are available at: https://github.com/agiresearch/ContextHub.
Abstract:Current large language models (LLMs) provide a strong foundation for large-scale user-oriented natural language tasks. A large number of users can easily inject adversarial text or instructions through the user interface, thus causing LLMs model security challenges. Although there is currently a large amount of research on prompt injection attacks, most of these black-box attacks use heuristic strategies. It is unclear how these heuristic strategies relate to the success rate of attacks and thus effectively improve model robustness. To solve this problem, we redefine the goal of the attack: to maximize the KL divergence between the conditional probabilities of the clean text and the adversarial text. Furthermore, we prove that maximizing the KL divergence is equivalent to maximizing the Mahalanobis distance between the embedded representation $x$ and $x'$ of the clean text and the adversarial text when the conditional probability is a Gaussian distribution and gives a quantitative relationship on $x$ and $x'$. Then we designed a simple and effective goal-guided generative prompt injection strategy (G2PIA) to find an injection text that satisfies specific constraints to achieve the optimal attack effect approximately. It is particularly noteworthy that our attack method is a query-free black-box attack method with low computational cost. Experimental results on seven LLM models and four datasets show the effectiveness of our attack method.
Abstract:Recent advancements in multi-modal artificial intelligence (AI) have revolutionized the fields of stock market forecasting and heart rate monitoring. Utilizing diverse data sources can substantially improve prediction accuracy. Nonetheless, additional data may not always align with the original dataset. Interpolation methods are commonly utilized for handling missing values in modal data, though they may exhibit limitations in the context of sparse information. Addressing this challenge, we propose a Modality Completion Deep Belief Network-Based Model (MC-DBN). This approach utilizes implicit features of complete data to compensate for gaps between itself and additional incomplete data. It ensures that the enhanced multi-modal data closely aligns with the dynamic nature of the real world to enhance the effectiveness of the model. We conduct evaluations of the MC-DBN model in two datasets from the stock market forecasting and heart rate monitoring domains. Comprehensive experiments showcase the model's capacity to bridge the semantic divide present in multi-modal data, subsequently enhancing its performance. The source code is available at: https://github.com/logan-0623/DBN-generate
Abstract:Generalized zero-shot learning models (GZSL) aim to recognize samples from seen or unseen classes using only samples from seen classes as training data. During inference, GZSL methods are often biased towards seen classes due to the visibility of seen class samples during training. Most current GZSL methods try to learn an accurate projection function (from visual space to semantic space) to avoid bias and ensure the effectiveness of GZSL methods. However, during inference, the computation of distance will be important when we classify the projection of any sample into its nearest class since we may learn a biased projection function in the model. In our work, we attempt to learn a parameterized Mahalanobis distance within the framework of VAEGAN (Variational Autoencoder \& Generative Adversarial Networks), where the weight matrix depends on the network's output. In particular, we improved the network structure of VAEGAN to leverage the discriminative models of two branches to separately predict the seen samples and the unseen samples generated by this seen one. We proposed a new loss function with two branches to help us learn the optimized Mahalanobis distance representation. Comprehensive evaluation benchmarks on four datasets demonstrate the superiority of our method over the state-of-the-art counterparts. Our codes are available at https://anonymous.4open.science/r/111hxr.
Abstract:Synthesising a text-to-image model of high-quality images by guiding the generative model through the Text description is an innovative and challenging task. In recent years, AttnGAN based on the Attention mechanism to guide GAN training has been proposed, SD-GAN, which adopts a self-distillation technique to improve the performance of the generator and the quality of image generation, and Stack-GAN++, which gradually improves the details and quality of the image by stacking multiple generators and discriminators. However, this series of improvements to GAN all have redundancy to a certain extent, which affects the generation performance and complexity to a certain extent. We use the popular simple and effective idea (1) to remove redundancy structure and improve the backbone network of AttnGAN. (2) to integrate and reconstruct multiple losses of DAMSM. Our improvements have significantly improved the model size and training efficiency while ensuring that the model's performance is unchanged and finally proposed our SEAttnGAN. Code is avalilable at https://github.com/jmyissb/SEAttnGAN.
Abstract:The field of image blending has gained popularity in recent years for its ability to create visually stunning content. However, the current image blending algorithm has the following problems: 1) The manual creation of the image blending mask requires a lot of manpower and material resources; 2) The image blending algorithm cannot effectively solve the problems of brightness distortion and low resolution. To this end, we propose a new image blending method: it combines semantic object detection and segmentation with corresponding mask generation to automatically blend images, while a two-stage iterative algorithm based on our proposed new saturation loss and PAN algorithm to fix brightness distortion and low resolution issues. Results on publicly available datasets show that our method outperforms many classic image blending algorithms on various performance metrics such as PSNR and SSIM.