Abstract:Object detectors, which are widely used in real-world applications, are vulnerable to backdoor attacks. This vulnerability arises because many users rely on datasets or pre-trained models provided by third parties due to constraints on data and resources. However, most research on backdoor attacks has focused on image classification, with limited investigation into object detection. Furthermore, the triggers for most existing backdoor attacks on object detection are manually generated, requiring prior knowledge and consistent patterns between the training and inference stages. This approach makes the attacks either easy to detect or difficult to adapt to various scenarios. To address these limitations, we propose novel twin trigger generative networks in the frequency domain to generate invisible triggers for implanting stealthy backdoors into models during training, and visible triggers for steady activation during inference, making the attack process difficult to trace. Specifically, for the invisible trigger generative network, we deploy a Gaussian smoothing layer and a high-frequency artifact classifier to enhance the stealthiness of backdoor implantation in object detectors. For the visible trigger generative network, we design a novel alignment loss to optimize the visible triggers so that they differ from the original patterns but still align with the malicious activation behavior of the invisible triggers. Extensive experimental results and analyses prove the possibility of using different triggers in the training stage and the inference stage, and demonstrate the attack effectiveness of our proposed visible trigger and invisible trigger generative networks, significantly reducing the mAP_0.5 of the object detectors by 70.0% and 84.5%, including YOLOv5 and YOLOv7 with different settings, respectively.
Abstract:Current large language models (LLM) provide a strong foundation for large-scale user-oriented natural language tasks. Many users can easily inject adversarial text or instructions through the user interface, thus causing LLM model security challenges like the language model not giving the correct answer. Although there is currently a large amount of research on black-box attacks, most of these black-box attacks use random and heuristic strategies. It is unclear how these strategies relate to the success rate of attacks and thus effectively improve model robustness. To solve this problem, we propose our target-driven black-box attack method to maximize the KL divergence between the conditional probabilities of the clean text and the attack text to redefine the attack's goal. We transform the distance maximization problem into two convex optimization problems based on the attack goal to solve the attack text and estimate the covariance. Furthermore, the projected gradient descent algorithm solves the vector corresponding to the attack text. Our target-driven black-box attack approach includes two attack strategies: token manipulation and misinformation attack. Experimental results on multiple Large Language Models and datasets demonstrate the effectiveness of our attack method.
Abstract:The rapid development of the Internet has profoundly changed human life. Humans are increasingly expressing themselves and interacting with others on social media platforms. However, although artificial intelligence technology has been widely used in many aspects of life, its application in social media content creation is still blank. To solve this problem, we propose a new prompt word generation framework based on multi-modal information fusion, which combines multiple tasks including topic classification, sentiment analysis, scene recognition and keyword extraction to generate more comprehensive prompt words. Subsequently, we use a template containing a set of prompt words to guide ChatGPT to generate high-quality tweets. Furthermore, in the absence of effective and objective evaluation criteria in the field of content generation, we use the ChatGPT tool to evaluate the results generated by the algorithm, making large-scale evaluation of content generation algorithms possible. Evaluation results on extensive content generation demonstrate that our cue word generation framework generates higher quality content compared to manual methods and other cueing techniques, while topic classification, sentiment analysis, and scene recognition significantly enhance content clarity and its consistency with the image.
Abstract:Zero-Shot Learning (ZSL) aims to enable classifiers to identify unseen classes by enhancing data efficiency at the class level. This is achieved by generating image features from pre-defined semantics of unseen classes. However, most current approaches heavily depend on the number of samples from seen classes, i.e. they do not consider instance-level effectiveness. In this paper, we demonstrate that limited seen examples generally result in deteriorated performance of generative models. To overcome these challenges, we propose ZeroDiff, a Diffusion-based Generative ZSL model. This unified framework incorporates diffusion models to improve data efficiency at both the class and instance levels. Specifically, for instance-level effectiveness, ZeroDiff utilizes a forward diffusion chain to transform limited data into an expanded set of noised data. For class-level effectiveness, we design a two-branch generation structure that consists of a Diffusion-based Feature Generator (DFG) and a Diffusion-based Representation Generator (DRG). DFG focuses on learning and sampling the distribution of cross-entropy-based features, whilst DRG learns the supervised contrastive-based representation to boost the zero-shot capabilities of DFG. Additionally, we employ three discriminators to evaluate generated features from various aspects and introduce a Wasserstein-distance-based mutual learning loss to transfer knowledge among discriminators, thereby enhancing guidance for generation. Demonstrated through extensive experiments on three popular ZSL benchmarks, our ZeroDiff not only achieves significant improvements over existing ZSL methods but also maintains robust performance even with scarce training data. Code will be released upon acceptance.
Abstract:Current large language models (LLMs) provide a strong foundation for large-scale user-oriented natural language tasks. A large number of users can easily inject adversarial text or instructions through the user interface, thus causing LLMs model security challenges. Although there is currently a large amount of research on prompt injection attacks, most of these black-box attacks use heuristic strategies. It is unclear how these heuristic strategies relate to the success rate of attacks and thus effectively improve model robustness. To solve this problem, we redefine the goal of the attack: to maximize the KL divergence between the conditional probabilities of the clean text and the adversarial text. Furthermore, we prove that maximizing the KL divergence is equivalent to maximizing the Mahalanobis distance between the embedded representation $x$ and $x'$ of the clean text and the adversarial text when the conditional probability is a Gaussian distribution and gives a quantitative relationship on $x$ and $x'$. Then we designed a simple and effective goal-guided generative prompt injection strategy (G2PIA) to find an injection text that satisfies specific constraints to achieve the optimal attack effect approximately. It is particularly noteworthy that our attack method is a query-free black-box attack method with low computational cost. Experimental results on seven LLM models and four datasets show the effectiveness of our attack method.
Abstract:This paper offers a comprehensive analysis of recent advancements in video inpainting techniques, a critical subset of computer vision and artificial intelligence. As a process that restores or fills in missing or corrupted portions of video sequences with plausible content, video inpainting has evolved significantly with the advent of deep learning methodologies. Despite the plethora of existing methods and their swift development, the landscape remains complex, posing challenges to both novices and established researchers. Our study deconstructs major techniques, their underpinning theories, and their effective applications. Moreover, we conduct an exhaustive comparative study, centering on two often-overlooked dimensions: visual quality and computational efficiency. We adopt a human-centric approach to assess visual quality, enlisting a panel of annotators to evaluate the output of different video inpainting techniques. This provides a nuanced qualitative understanding that complements traditional quantitative metrics. Concurrently, we delve into the computational aspects, comparing inference times and memory demands across a standardized hardware setup. This analysis underscores the balance between quality and efficiency: a critical consideration for practical applications where resources may be constrained. By integrating human validation and computational resource comparison, this survey not only clarifies the present landscape of video inpainting techniques but also charts a course for future explorations in this vibrant and evolving field.
Abstract:Generalized zero-shot learning models (GZSL) aim to recognize samples from seen or unseen classes using only samples from seen classes as training data. During inference, GZSL methods are often biased towards seen classes due to the visibility of seen class samples during training. Most current GZSL methods try to learn an accurate projection function (from visual space to semantic space) to avoid bias and ensure the effectiveness of GZSL methods. However, during inference, the computation of distance will be important when we classify the projection of any sample into its nearest class since we may learn a biased projection function in the model. In our work, we attempt to learn a parameterized Mahalanobis distance within the framework of VAEGAN (Variational Autoencoder \& Generative Adversarial Networks), where the weight matrix depends on the network's output. In particular, we improved the network structure of VAEGAN to leverage the discriminative models of two branches to separately predict the seen samples and the unseen samples generated by this seen one. We proposed a new loss function with two branches to help us learn the optimized Mahalanobis distance representation. Comprehensive evaluation benchmarks on four datasets demonstrate the superiority of our method over the state-of-the-art counterparts. Our codes are available at https://anonymous.4open.science/r/111hxr.
Abstract:Synthesising a text-to-image model of high-quality images by guiding the generative model through the Text description is an innovative and challenging task. In recent years, AttnGAN based on the Attention mechanism to guide GAN training has been proposed, SD-GAN, which adopts a self-distillation technique to improve the performance of the generator and the quality of image generation, and Stack-GAN++, which gradually improves the details and quality of the image by stacking multiple generators and discriminators. However, this series of improvements to GAN all have redundancy to a certain extent, which affects the generation performance and complexity to a certain extent. We use the popular simple and effective idea (1) to remove redundancy structure and improve the backbone network of AttnGAN. (2) to integrate and reconstruct multiple losses of DAMSM. Our improvements have significantly improved the model size and training efficiency while ensuring that the model's performance is unchanged and finally proposed our SEAttnGAN. Code is avalilable at https://github.com/jmyissb/SEAttnGAN.
Abstract:The field of image blending has gained popularity in recent years for its ability to create visually stunning content. However, the current image blending algorithm has the following problems: 1) The manual creation of the image blending mask requires a lot of manpower and material resources; 2) The image blending algorithm cannot effectively solve the problems of brightness distortion and low resolution. To this end, we propose a new image blending method: it combines semantic object detection and segmentation with corresponding mask generation to automatically blend images, while a two-stage iterative algorithm based on our proposed new saturation loss and PAN algorithm to fix brightness distortion and low resolution issues. Results on publicly available datasets show that our method outperforms many classic image blending algorithms on various performance metrics such as PSNR and SSIM.
Abstract:Zero-shot learning (ZSL) aims to identify unseen classes with zero samples during training. Broadly speaking, present ZSL methods usually adopt class-level semantic labels and compare them with instance-level semantic predictions to infer unseen classes. However, we find that such existing models mostly produce imbalanced semantic predictions, i.e. these models could perform precisely for some semantics, but may not for others. To address the drawback, we aim to introduce an imbalanced learning framework into ZSL. However, we find that imbalanced ZSL has two unique challenges: (1) Its imbalanced predictions are highly correlated with the value of semantic labels rather than the number of samples as typically considered in the traditional imbalanced learning; (2) Different semantics follow quite different error distributions between classes. To mitigate these issues, we first formalize ZSL as an imbalanced regression problem which offers theoretical foundations to interpret how semantic labels lead to imbalanced semantic predictions. We then propose a re-weighted loss termed Re-balanced Mean-Squared Error (ReMSE), which tracks the mean and variance of error distributions, thus ensuring rebalanced learning across classes. As a major contribution, we conduct a series of analyses showing that ReMSE is theoretically well established. Extensive experiments demonstrate that the proposed method effectively alleviates the imbalance in semantic prediction and outperforms many state-of-the-art ZSL methods.