Abstract:Current large language models (LLM) provide a strong foundation for large-scale user-oriented natural language tasks. Many users can easily inject adversarial text or instructions through the user interface, thus causing LLM model security challenges like the language model not giving the correct answer. Although there is currently a large amount of research on black-box attacks, most of these black-box attacks use random and heuristic strategies. It is unclear how these strategies relate to the success rate of attacks and thus effectively improve model robustness. To solve this problem, we propose our target-driven black-box attack method to maximize the KL divergence between the conditional probabilities of the clean text and the attack text to redefine the attack's goal. We transform the distance maximization problem into two convex optimization problems based on the attack goal to solve the attack text and estimate the covariance. Furthermore, the projected gradient descent algorithm solves the vector corresponding to the attack text. Our target-driven black-box attack approach includes two attack strategies: token manipulation and misinformation attack. Experimental results on multiple Large Language Models and datasets demonstrate the effectiveness of our attack method.
Abstract:Latent representation alignment has become a foundational technique for constructing multimodal large language models (MLLM) by mapping embeddings from different modalities into a shared space, often aligned with the embedding space of large language models (LLMs) to enable effective cross-modal understanding. While preliminary protein-focused MLLMs have emerged, they have predominantly relied on heuristic approaches, lacking a fundamental understanding of optimal alignment practices across representations. In this study, we explore the alignment of multimodal representations between LLMs and Geometric Deep Models (GDMs) in the protein domain. We comprehensively evaluate three state-of-the-art LLMs (Gemma2-2B, LLaMa3.1-8B, and LLaMa3.1-70B) with four protein-specialized GDMs (GearNet, GVP, ScanNet, GAT). Our work examines alignment factors from both model and protein perspectives, identifying challenges in current alignment methodologies and proposing strategies to improve the alignment process. Our key findings reveal that GDMs incorporating both graph and 3D structural information align better with LLMs, larger LLMs demonstrate improved alignment capabilities, and protein rarity significantly impacts alignment performance. We also find that increasing GDM embedding dimensions, using two-layer projection heads, and fine-tuning LLMs on protein-specific data substantially enhance alignment quality. These strategies offer potential enhancements to the performance of protein-related multimodal models. Our code and data are available at https://github.com/Tizzzzy/LLM-GDM-alignment.
Abstract:In-context learning can help Large Language Models (LLMs) to adapt new tasks without additional training. However, this performance heavily depends on the quality of the demonstrations, driving research into effective demonstration selection algorithms to optimize this process. These algorithms assist users in selecting the best $k$ input-label pairs (demonstration examples) based on a given test input, enabling LLMs to in-context learn the relationship between the provided examples and the test inputs. Despite all the proposed demonstration selection algorithms, their efficiency and effectiveness remain unclear. This lack of clarity make it difficult to apply these algorithms in real-world scenarios and poses challenges for future research aimed at developing improved methods. This paper revisits six proposed algorithms, evaluating them on five datasets from both efficiency and effectiveness perspectives. Our experiments reveal significant variations in algorithm performance across different tasks, with some methods struggling to outperform random selection in certain scenarios. We also find that increasing the number of demonstrations does not always lead to better performance, and that there are often trade-offs between accuracy and computational efficiency. Our code is available at https://github.com/Tizzzzy/Demonstration_Selection_Overview.
Abstract:In the rapidly evolving field of legal analytics, finding relevant cases and accurately predicting judicial outcomes are challenging because of the complexity of legal language, which often includes specialized terminology, complex syntax, and historical context. Moreover, the subtle distinctions between similar and precedent cases require a deep understanding of legal knowledge. Researchers often conflate these concepts, making it difficult to develop specialized techniques to effectively address these nuanced tasks. In this paper, we introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain to address these challenges. LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP). By clearly distinguishing between precedent and similar cases, we provide essential clarity, guiding future research in developing specialized strategies for these tasks. We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format. Furthermore, we also use techniques such as in-context learning (ICL) and advanced information retrieval methods in LawLLM. The evaluation results demonstrate that LawLLM consistently outperforms existing baselines in both zero-shot and few-shot scenarios, offering unparalleled multi-task capabilities and filling critical gaps in the legal domain.
Abstract:The task of predicting multiple links within knowledge graphs (KGs) stands as a challenge in the field of knowledge graph analysis, a challenge increasingly resolvable due to advancements in natural language processing (NLP) and KG embedding techniques. This paper introduces a novel methodology, the Knowledge Graph Large Language Model Framework (KG-LLM), which leverages pivotal NLP paradigms, including chain-of-thought (CoT) prompting and in-context learning (ICL), to enhance multi-hop link prediction in KGs. By converting the KG to a CoT prompt, our framework is designed to discern and learn the latent representations of entities and their interrelations. To show the efficacy of the KG-LLM Framework, we fine-tune three leading Large Language Models (LLMs) within this framework, employing both non-ICL and ICL tasks for a comprehensive evaluation. Further, we explore the framework's potential to provide LLMs with zero-shot capabilities for handling previously unseen prompts. Our experimental findings discover that integrating ICL and CoT not only augments the performance of our approach but also significantly boosts the models' generalization capacity, thereby ensuring more precise predictions in unfamiliar scenarios.
Abstract:This report investigates the history and impact of Generative Models and Connected and Automated Vehicles (CAVs), two groundbreaking forces pushing progress in technology and transportation. By focusing on the application of generative models within the context of CAVs, the study aims to unravel how this integration could enhance predictive modeling, simulation accuracy, and decision-making processes in autonomous vehicles. This thesis discusses the benefits and challenges of integrating generative models and CAV technology in transportation. It aims to highlight the progress made, the remaining obstacles, and the potential for advancements in safety and innovation.
Abstract:Artificial intelligence (AI) in healthcare has significantly advanced intelligent medical treatment. However, traditional intelligent healthcare is limited by static data and unified standards, preventing full integration with individual situations and other challenges. Hence, a more professional and detailed intelligent healthcare method is needed for development. To this end, we propose an innovative framework named Heath-LLM, which combines large-scale feature extraction and medical knowledge trade-off scoring. Compared to traditional health management methods, our approach has three main advantages. First, our method integrates health reports into a large model to provide detailed task information. Second, professional medical expertise is used to adjust the weighted scores of health characteristics. Third, we use a semi-automated feature extraction framework to enhance the analytical power of language models and incorporate expert insights to improve the accuracy of disease prediction. We have conducted disease prediction experiments on a large number of health reports to assess the effectiveness of Health-LLM. The results of the experiments indicate that the proposed method surpasses traditional methods and has the potential to revolutionize disease prediction and personalized health management. The code is available at https://github.com/jmyissb/HealthLLM.
Abstract:Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs' reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs' potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.
Abstract:In the rapidly evolving landscape of artificial intelligence, ChatGPT has been widely used in various applications. The new feature: customization of ChatGPT models by users to cater to specific needs has opened new frontiers in AI utility. However, this study reveals a significant security vulnerability inherent in these user-customized GPTs: prompt injection attacks. Through comprehensive testing of over 200 user-designed GPT models via adversarial prompts, we demonstrate that these systems are susceptible to prompt injections. Through prompt injection, an adversary can not only extract the customized system prompts but also access the uploaded files. This paper provides a first-hand analysis of the prompt injection, alongside the evaluation of the possible mitigation of such attacks. Our findings underscore the urgent need for robust security frameworks in the design and deployment of customizable GPT models. The intent of this paper is to raise awareness and prompt action in the AI community, ensuring that the benefits of GPT customization do not come at the cost of compromised security and privacy.