Engineering Mathematics, University of Bristol, affiliated with the Bristol Robotics Lab, United Kingdom
Abstract:Many bias mitigation methods have been developed for addressing fairness issues in machine learning. We found that using linear mixup alone, a data augmentation technique, for bias mitigation, can still retain biases present in dataset labels. Research presented in this paper aims to address this issue by proposing a novel pre-processing strategy in which both an existing mixup method and our new bias mitigation algorithm can be utilized to improve the generation of labels of augmented samples, which are proximity aware. Specifically, we proposed ProxiMix which keeps both pairwise and proximity relationships for fairer data augmentation. We conducted thorough experiments with three datasets, three ML models, and different hyperparameters settings. Our experimental results showed the effectiveness of ProxiMix from both fairness of predictions and fairness of recourse perspectives.
Abstract:Time series forecasting, while vital in various applications, often employs complex models that are difficult for humans to understand. Effective explainable AI techniques are crucial to bridging the gap between model predictions and user understanding. This paper presents a framework - TSFeatLIME, extending TSLIME, tailored specifically for explaining univariate time series forecasting. TSFeatLIME integrates an auxiliary feature into the surrogate model and considers the pairwise Euclidean distances between the queried time series and the generated samples to improve the fidelity of the surrogate models. However, the usefulness of such explanations for human beings remains an open question. We address this by conducting a user study with 160 participants through two interactive interfaces, aiming to measure how individuals from different backgrounds can simulate or predict model output changes in the treatment group and control group. Our results show that the surrogate model under the TSFeatLIME framework is able to better simulate the behaviour of the black-box considering distance, without sacrificing accuracy. In addition, the user study suggests that the explanations were significantly more effective for participants without a computer science background.
Abstract:Reinforcement Learning has revolutionized decision-making processes in dynamic environments, yet it often struggles with autonomously detecting and achieving goals without clear feedback signals. For example, in a Source Term Estimation problem, the lack of precise environmental information makes it challenging to provide clear feedback signals and to define and evaluate how the source's location is determined. To address this challenge, the Autonomous Goal Detection and Cessation (AGDC) module was developed, enhancing various RL algorithms by incorporating a self-feedback mechanism for autonomous goal detection and cessation upon task completion. Our method effectively identifies and ceases undefined goals by approximating the agent's belief, significantly enhancing the capabilities of RL algorithms in environments with limited feedback. To validate effectiveness of our approach, we integrated AGDC with deep Q-Network, proximal policy optimization, and deep deterministic policy gradient algorithms, and evaluated its performance on the Source Term Estimation problem. The experimental results showed that AGDC-enhanced RL algorithms significantly outperformed traditional statistical methods such as infotaxis, entrotaxis, and dual control for exploitation and exploration, as well as a non-statistical random action selection method. These improvements were evident in terms of success rate, mean traveled distance, and search time, highlighting AGDC's effectiveness and efficiency in complex, real-world scenarios.
Abstract:Recent studies highlight the effectiveness of using in-context learning (ICL) to steer large language models (LLMs) in processing tabular data, a challenging task given the structured nature of such data. Despite advancements in performance, the fairness implications of these methods are less understood. This study investigates how varying demonstrations within ICL prompts influence the fairness outcomes of LLMs. Our findings reveal that deliberately including minority group samples in prompts significantly boosts fairness without sacrificing predictive accuracy. Further experiments demonstrate that the proportion of minority to majority samples in demonstrations affects the trade-off between fairness and prediction accuracy. Based on these insights, we introduce a mitigation technique that employs clustering and evolutionary strategies to curate a diverse and representative sample set from the training data. This approach aims to enhance both predictive performance and fairness in ICL applications. Experimental results validate that our proposed method dramatically improves fairness across various metrics, showing its efficacy in real-world scenarios.
Abstract:This paper introduces a novel approach Counterfactual Shapley Values (CSV), which enhances explainability in reinforcement learning (RL) by integrating counterfactual analysis with Shapley Values. The approach aims to quantify and compare the contributions of different state dimensions to various action choices. To more accurately analyze these impacts, we introduce new characteristic value functions, the ``Counterfactual Difference Characteristic Value" and the ``Average Counterfactual Difference Characteristic Value." These functions help calculate the Shapley values to evaluate the differences in contributions between optimal and non-optimal actions. Experiments across several RL domains, such as GridWorld, FrozenLake, and Taxi, demonstrate the effectiveness of the CSV method. The results show that this method not only improves transparency in complex RL systems but also quantifies the differences across various decisions.
Abstract:Miller recently proposed a definition of contrastive (counterfactual) explanations based on the well-known Halpern-Pearl (HP) definitions of causes and (non-contrastive) explanations. Crucially, the Miller definition was based on the original HP definition of explanations, but this has since been modified by Halpern; presumably because the original yields counterintuitive results in many standard examples. More recently Borner has proposed a third definition, observing that this modified HP definition may also yield counterintuitive results. In this paper we show that the Miller definition inherits issues found in the original HP definition. We address these issues by proposing two improved variants based on the more robust modified HP and Borner definitions. We analyse our new definitions and show that they retain the spirit of the Miller definition where all three variants satisfy an alternative unified definition that is modular with respect to an underlying definition of non-contrastive explanations. To the best of our knowledge this paper also provides the first explicit comparison between the original and modified HP definitions.
Abstract:Microsurgery involves the dexterous manipulation of delicate tissue or fragile structures such as small blood vessels, nerves, etc., under a microscope. To address the limitation of imprecise manipulation of human hands, robotic systems have been developed to assist surgeons in performing complex microsurgical tasks with greater precision and safety. However, the steep learning curve for robot-assisted microsurgery (RAMS) and the shortage of well-trained surgeons pose significant challenges to the widespread adoption of RAMS. Therefore, the development of a versatile training system for RAMS is necessary, which can bring tangible benefits to both surgeons and patients. In this paper, we present a Tactile Internet-Based Micromanipulation System (TIMS) based on a ROS-Django web-based architecture for microsurgical training. This system can provide tactile feedback to operators via a wearable tactile display (WTD), while real-time data is transmitted through the internet via a ROS-Django framework. In addition, TIMS integrates haptic guidance to `guide' the trainees to follow a desired trajectory provided by expert surgeons. Learning from demonstration based on Gaussian Process Regression (GPR) was used to generate the desired trajectory. User studies were also conducted to verify the effectiveness of our proposed TIMS, comparing users' performance with and without tactile feedback and/or haptic guidance.
Abstract:The Dempster-Shafer theory of evidence has been used intensively to deal with uncertainty in knowledge-based systems. However the representation of uncertain relationships between evidence and hypothesis groups (heuristic knowledge) is still a major research problem. This paper presents an approach to representing such heuristic knowledge by evidential mappings which are defined on the basis of mass functions. The relationships between evidential mappings and multi valued mappings, as well as between evidential mappings and Bayesian multi- valued causal link models in Bayesian theory are discussed. Following this the detailed procedures for constructing evidential mappings for any set of heuristic rules are introduced. Several situations of belief propagation are discussed.
Abstract:In this paper, we propose a revision-based approach for conflict resolution by generalizing the Disjunctive Maxi-Adjustment (DMA) approach (Benferhat et al. 2004). Revision operators can be classified into two different families: the model-based ones and the formula-based ones. So the revision-based approach has two different versions according to which family of revision operators is chosen. Two particular revision operators are considered, one is the Dalal's revision operator, which is a model-based revision operator, and the other is the cardinality-maximal based revision operator, which is a formulabased revision operator. When the Dalal's revision operator is chosen, the revision-based approach is independent of the syntactic form in each stratum and it captures some notion of minimal change. When the cardinalitymaximal based revision operator is chosen, the revision-based approach is equivalent to the DMA approach. We also show that both approaches are computationally easier than the DMA approach.
Abstract:Belief merging is an important but difficult problem in Artificial Intelligence, especially when sources of information are pervaded with uncertainty. Many merging operators have been proposed to deal with this problem in possibilistic logic, a weighted logic which is powerful for handling inconsistency and deal- ing with uncertainty. They often result in a possibilistic knowledge base which is a set of weighted formulas. Although possibilistic logic is inconsistency tolerant, it suers from the well-known "drowning effect". Therefore, we may still want to obtain a consistent possi- bilistic knowledge base as the result of merg- ing. In such a case, we argue that it is not always necessary to keep weighted informa- tion after merging. In this paper, we define a merging operator that maps a set of pos- sibilistic knowledge bases and a formula rep- resenting the integrity constraints to a clas- sical knowledge base by using lexicographic ordering. We show that it satisfies nine pos- tulates that generalize basic postulates for propositional merging given in [11]. These postulates capture the principle of minimal change in some sense. We then provide an algorithm for generating the resulting knowl- edge base of our merging operator. Finally, we discuss the compatibility of our merging operator with propositional merging and es- tablish the advantage of our merging opera- tor over existing semantic merging operators in the propositional case.