Abstract:Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in processing both visual and textual information. However, the critical challenge of alignment between visual and linguistic representations is not fully understood. This survey presents a comprehensive examination of alignment and misalignment in LVLMs through an explainability lens. We first examine the fundamentals of alignment, exploring its representational and behavioral aspects, training methodologies, and theoretical foundations. We then analyze misalignment phenomena across three semantic levels: object, attribute, and relational misalignment. Our investigation reveals that misalignment emerges from challenges at multiple levels: the data level, the model level, and the inference level. We provide a comprehensive review of existing mitigation strategies, categorizing them into parameter-frozen and parameter-tuning approaches. Finally, we outline promising future research directions, emphasizing the need for standardized evaluation protocols and in-depth explainability studies.
Abstract:Domain generalization methods aim to learn transferable knowledge from source domains that can generalize well to unseen target domains. Recent studies show that neural networks frequently suffer from a simplicity-biased learning behavior which leads to over-reliance on specific frequency sets, namely as frequency shortcuts, instead of semantic information, resulting in poor generalization performance. Despite previous data augmentation techniques successfully enhancing generalization performances, they intend to apply more frequency shortcuts, thereby causing hallucinations of generalization improvement. In this paper, we aim to prevent such learning behavior of applying frequency shortcuts from a data-driven perspective. Given the theoretical justification of models' biased learning behavior on different spatial frequency components, which is based on the dataset frequency properties, we argue that the learning behavior on various frequency components could be manipulated by changing the dataset statistical structure in the Fourier domain. Intuitively, as frequency shortcuts are hidden in the dominant and highly dependent frequencies of dataset structure, dynamically perturbating the over-reliance frequency components could prevent the application of frequency shortcuts. To this end, we propose two effective data augmentation modules designed to collaboratively and adaptively adjust the frequency characteristic of the dataset, aiming to dynamically influence the learning behavior of the model and ultimately serving as a strategy to mitigate shortcut learning. Code is available at AdvFrequency (https://github.com/C0notSilly/AdvFrequency).
Abstract:Many bias mitigation methods have been developed for addressing fairness issues in machine learning. We found that using linear mixup alone, a data augmentation technique, for bias mitigation, can still retain biases present in dataset labels. Research presented in this paper aims to address this issue by proposing a novel pre-processing strategy in which both an existing mixup method and our new bias mitigation algorithm can be utilized to improve the generation of labels of augmented samples, which are proximity aware. Specifically, we proposed ProxiMix which keeps both pairwise and proximity relationships for fairer data augmentation. We conducted thorough experiments with three datasets, three ML models, and different hyperparameters settings. Our experimental results showed the effectiveness of ProxiMix from both fairness of predictions and fairness of recourse perspectives.
Abstract:Recent studies highlight the effectiveness of using in-context learning (ICL) to steer large language models (LLMs) in processing tabular data, a challenging task given the structured nature of such data. Despite advancements in performance, the fairness implications of these methods are less understood. This study investigates how varying demonstrations within ICL prompts influence the fairness outcomes of LLMs. Our findings reveal that deliberately including minority group samples in prompts significantly boosts fairness without sacrificing predictive accuracy. Further experiments demonstrate that the proportion of minority to majority samples in demonstrations affects the trade-off between fairness and prediction accuracy. Based on these insights, we introduce a mitigation technique that employs clustering and evolutionary strategies to curate a diverse and representative sample set from the training data. This approach aims to enhance both predictive performance and fairness in ICL applications. Experimental results validate that our proposed method dramatically improves fairness across various metrics, showing its efficacy in real-world scenarios.
Abstract:Advanced machine learning models have recently achieved high predictive accuracy for weather and climate prediction. However, these complex models often lack inherent transparency and interpretability, acting as "black boxes" that impede user trust and hinder further model improvements. As such, interpretable machine learning techniques have become crucial in enhancing the credibility and utility of weather and climate modeling. In this survey, we review current interpretable machine learning approaches applied to meteorological predictions. We categorize methods into two major paradigms: 1) Post-hoc interpretability techniques that explain pre-trained models, such as perturbation-based, game theory based, and gradient-based attribution methods. 2) Designing inherently interpretable models from scratch using architectures like tree ensembles and explainable neural networks. We summarize how each technique provides insights into the predictions, uncovering novel meteorological relationships captured by machine learning. Lastly, we discuss research challenges around achieving deeper mechanistic interpretations aligned with physical principles, developing standardized evaluation benchmarks, integrating interpretability into iterative model development workflows, and providing explainability for large foundation models.
Abstract:This paper introduces a new approach based on a coupled representation and a neural volume optimization to implicitly perform 3D shape editing in latent space. This work has three innovations. First, we design the coupled neural shape (CNS) representation for supporting 3D shape editing. This representation includes a latent code, which captures high-level global semantics of the shape, and a 3D neural feature volume, which provides a spatial context to associate with the local shape changes given by the editing. Second, we formulate the coupled neural shape optimization procedure to co-optimize the two coupled components in the representation subject to the editing operation. Last, we offer various 3D shape editing operators, i.e., copy, resize, delete, and drag, and derive each into an objective for guiding the CNS optimization, such that we can iteratively co-optimize the latent code and neural feature volume to match the editing target. With our approach, we can achieve a rich variety of editing results that are not only aware of the shape semantics but are also not easy to achieve by existing approaches. Both quantitative and qualitative evaluations demonstrate the strong capabilities of our approach over the state-of-the-art solutions.
Abstract:This paper presents a new text-guided technique for generating 3D shapes. The technique leverages a hybrid 3D shape representation, namely EXIM, combining the strengths of explicit and implicit representations. Specifically, the explicit stage controls the topology of the generated 3D shapes and enables local modifications, whereas the implicit stage refines the shape and paints it with plausible colors. Also, the hybrid approach separates the shape and color and generates color conditioned on shape to ensure shape-color consistency. Unlike the existing state-of-the-art methods, we achieve high-fidelity shape generation from natural-language descriptions without the need for time-consuming per-shape optimization or reliance on human-annotated texts during training or test-time optimization. Further, we demonstrate the applicability of our approach to generate indoor scenes with consistent styles using text-induced 3D shapes. Through extensive experiments, we demonstrate the compelling quality of our results and the high coherency of our generated shapes with the input texts, surpassing the performance of existing methods by a significant margin. Codes and models are released at https://github.com/liuzhengzhe/EXIM.
Abstract:This paper presents CLIPXPlore, a new framework that leverages a vision-language model to guide the exploration of the 3D shape space. Many recent methods have been developed to encode 3D shapes into a learned latent shape space to enable generative design and modeling. Yet, existing methods lack effective exploration mechanisms, despite the rich information. To this end, we propose to leverage CLIP, a powerful pre-trained vision-language model, to aid the shape-space exploration. Our idea is threefold. First, we couple the CLIP and shape spaces by generating paired CLIP and shape codes through sketch images and training a mapper network to connect the two spaces. Second, to explore the space around a given shape, we formulate a co-optimization strategy to search for the CLIP code that better matches the geometry of the shape. Third, we design three exploration modes, binary-attribute-guided, text-guided, and sketch-guided, to locate suitable exploration trajectories in shape space and induce meaningful changes to the shape. We perform a series of experiments to quantitatively and visually compare CLIPXPlore with different baselines in each of the three exploration modes, showing that CLIPXPlore can produce many meaningful exploration results that cannot be achieved by the existing solutions.
Abstract:Object-centric learning aims to represent visual data with a set of object entities (a.k.a. slots), providing structured representations that enable systematic generalization. Leveraging advanced architectures like Transformers, recent approaches have made significant progress in unsupervised object discovery. In addition, slot-based representations hold great potential for generative modeling, such as controllable image generation and object manipulation in image editing. However, current slot-based methods often produce blurry images and distorted objects, exhibiting poor generative modeling capabilities. In this paper, we focus on improving slot-to-image decoding, a crucial aspect for high-quality visual generation. We introduce SlotDiffusion -- an object-centric Latent Diffusion Model (LDM) designed for both image and video data. Thanks to the powerful modeling capacity of LDMs, SlotDiffusion surpasses previous slot models in unsupervised object segmentation and visual generation across six datasets. Furthermore, our learned object features can be utilized by existing object-centric dynamics models, improving video prediction quality and downstream temporal reasoning tasks. Finally, we demonstrate the scalability of SlotDiffusion to unconstrained real-world datasets such as PASCAL VOC and COCO, when integrated with self-supervised pre-trained image encoders.
Abstract:This paper presents a new approach for 3D shape generation, inversion, and manipulation, through a direct generative modeling on a continuous implicit representation in wavelet domain. Specifically, we propose a compact wavelet representation with a pair of coarse and detail coefficient volumes to implicitly represent 3D shapes via truncated signed distance functions and multi-scale biorthogonal wavelets. Then, we design a pair of neural networks: a diffusion-based generator to produce diverse shapes in the form of the coarse coefficient volumes and a detail predictor to produce compatible detail coefficient volumes for introducing fine structures and details. Further, we may jointly train an encoder network to learn a latent space for inverting shapes, allowing us to enable a rich variety of whole-shape and region-aware shape manipulations. Both quantitative and qualitative experimental results manifest the compelling shape generation, inversion, and manipulation capabilities of our approach over the state-of-the-art methods.