Abstract:This technical report presents Ring-Lite-Distill, a lightweight reasoning model derived from our open-source Mixture-of-Experts (MoE) Large Language Models (LLMs) Ling-Lite. This study demonstrates that through meticulous high-quality data curation and ingenious training paradigms, the compact MoE model Ling-Lite can be further trained to achieve exceptional reasoning capabilities, while maintaining its parameter-efficient architecture with only 2.75 billion activated parameters, establishing an efficient lightweight reasoning architecture. In particular, in constructing this model, we have not merely focused on enhancing advanced reasoning capabilities, exemplified by high-difficulty mathematical problem solving, but rather aimed to develop a reasoning model with more comprehensive competency coverage. Our approach ensures coverage across reasoning tasks of varying difficulty levels while preserving generic capabilities, such as instruction following, tool use, and knowledge retention. We show that, Ring-Lite-Distill's reasoning ability reaches a level comparable to DeepSeek-R1-Distill-Qwen-7B, while its general capabilities significantly surpass those of DeepSeek-R1-Distill-Qwen-7B. The models are accessible at https://huggingface.co/inclusionAI
Abstract:Multi-object tracking plays a crucial role in various applications, such as autonomous driving and security surveillance. This study introduces Deep LG-Track, a novel multi-object tracker that incorporates three key enhancements to improve the tracking accuracy and robustness. First, an adaptive Kalman filter is developed to dynamically update the covariance of measurement noise based on detection confidence and trajectory disappearance. Second, a novel cost matrix is formulated to adaptively fuse motion and appearance information, leveraging localization confidence and detection confidence as weighting factors. Third, a dynamic appearance feature updating strategy is introduced, adjusting the relative weighting of historical and current appearance features based on appearance clarity and localization accuracy. Comprehensive evaluations on the MOT17 and MOT20 datasets demonstrate that the proposed Deep LG-Track consistently outperforms state-of-the-art trackers across multiple performance metrics, highlighting its effectiveness in multi-object tracking tasks.
Abstract:Point cloud maps generated via LiDAR sensors using extensive remotely sensed data are commonly used by autonomous vehicles and robots for localization and navigation. However, dynamic objects contained in point cloud maps not only downgrade localization accuracy and navigation performance but also jeopardize the map quality. In response to this challenge, we propose in this paper a novel semantic SLAM approach for dynamic scenes based on LiDAR point clouds, referred to as SD-SLAM hereafter. The main contributions of this work are in three aspects: 1) introducing a semantic SLAM framework dedicatedly for dynamic scenes based on LiDAR point clouds, 2) Employing semantics and Kalman filtering to effectively differentiate between dynamic and semi-static landmarks, and 3) Making full use of semi-static and pure static landmarks with semantic information in the SD-SLAM process to improve localization and mapping performance. To evaluate the proposed SD-SLAM, tests were conducted using the widely adopted KITTI odometry dataset. Results demonstrate that the proposed SD-SLAM effectively mitigates the adverse effects of dynamic objects on SLAM, improving vehicle localization and mapping performance in dynamic scenes, and simultaneously constructing a static semantic map with multiple semantic classes for enhanced environment understanding.