Robotics and Intelligent Manufacturing & School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China, Shenzhen Institute of Artificial Intelligence and Robotics for Society, China
Abstract:Deep learning has demonstrated remarkable capabilities in simulating complex dynamic systems. However, existing methods require known physical properties as supervision or inputs, limiting their applicability under unknown conditions. To explore this challenge, we introduce Cloth Dynamics Grounding (CDG), a novel scenario for unsupervised learning of cloth dynamics from multi-view visual observations. We further propose Cloth Dynamics Splatting (CloDS), an unsupervised dynamic learning framework designed for CDG. CloDS adopts a three-stage pipeline that first performs video-to-geometry grounding and then trains a dynamics model on the grounded meshes. To cope with large non-linear deformations and severe self-occlusions during grounding, we introduce a dual-position opacity modulation that supports bidirectional mapping between 2D observations and 3D geometry via mesh-based Gaussian splatting in video-to-geometry grounding stage. It jointly considers the absolute and relative position of Gaussian components. Comprehensive experimental evaluations demonstrate that CloDS effectively learns cloth dynamics from visual data while maintaining strong generalization capabilities for unseen configurations. Our code is available at https://github.com/whynot-zyl/CloDS. Visualization results are available at https://github.com/whynot-zyl/CloDS_video}.%\footnote{As in this example.
Abstract:Depth completion aims to predict a dense depth map from a color image with sparse depth measurements. Although deep learning methods have achieved state-of-the-art (SOTA), effectively handling the sparse and irregular nature of input depth data in deep networks remains a significant challenge, often limiting performance, especially under high sparsity. To overcome this limitation, we introduce the Gaussian Belief Propagation Network (GBPN), a novel hybrid framework synergistically integrating deep learning with probabilistic graphical models for end-to-end depth completion. Specifically, a scene-specific Markov Random Field (MRF) is dynamically constructed by the Graphical Model Construction Network (GMCN), and then inferred via Gaussian Belief Propagation (GBP) to yield the dense depth distribution. Crucially, the GMCN learns to construct not only the data-dependent potentials of MRF but also its structure by predicting adaptive non-local edges, enabling the capture of complex, long-range spatial dependencies. Furthermore, we enhance GBP with a serial \& parallel message passing scheme, designed for effective information propagation, particularly from sparse measurements. Extensive experiments demonstrate that GBPN achieves SOTA performance on the NYUv2 and KITTI benchmarks. Evaluations across varying sparsity levels, sparsity patterns, and datasets highlight GBPN's superior performance, notable robustness, and generalizable capability.
Abstract:Real-world federated systems seldom operate on static data: input distributions drift while privacy rules forbid raw-data sharing. We study this setting as Federated Domain-Incremental Learning (FDIL), where (i) clients are heterogeneous, (ii) tasks arrive sequentially with shifting domains, yet (iii) the label space remains fixed. Two theoretical pillars remain missing for FDIL under realistic deployment: a guarantee of backward knowledge transfer (BKT) and a convergence rate that holds across the sequence of all tasks with partial participation. We introduce SPECIAL (Server-Proximal Efficient Continual Aggregation for Learning), a simple, memory-free FDIL algorithm that adds a single server-side ``anchor'' to vanilla FedAvg: in each round, the server nudges the uniformly sampled participated clients update toward the previous global model with a lightweight proximal term. This anchor curbs cumulative drift without replay buffers, synthetic data, or task-specific heads, keeping communication and model size unchanged. Our theory shows that SPECIAL (i) preserves earlier tasks: a BKT bound caps any increase in prior-task loss by a drift-controlled term that shrinks with more rounds, local epochs, and participating clients; and (ii) learns efficiently across all tasks: the first communication-efficient non-convex convergence rate for FDIL with partial participation, O((E/NT)^(1/2)), with E local epochs, T communication rounds, and N participated clients per round, matching single-task FedAvg while explicitly separating optimization variance from inter-task drift. Experimental results further demonstrate the effectiveness of SPECIAL.
Abstract:Missed and delayed diagnosis remains a major challenge in rare disease care. At the initial clinical encounters, physicians assess rare disease risk using only limited information under high uncertainty. When high-risk patients are not recognised at this stage, targeted diagnostic testing is often not initiated, resulting in missed diagnosis. Existing primary care triage processes are structurally insufficient to reliably identify patients with rare diseases at initial clinical presentation and universal screening is needed to reduce diagnostic delay. Here we present RareAlert, an early screening system which predict patient-level rare disease risk from routinely available primary-visit information. RareAlert integrates reasoning generated by ten LLMs, calibrates and weights these signals using machine learning, and distils the aligned reasoning into a single locally deployable model. To develop and evaluate RareAlert, we curated RareBench, a real-world dataset of 158,666 cases covering 33 Orphanet disease categories and more than 7,000 rare conditions, including both rare and non-rare presentations. The results showed that rare disease identification can be reconceptualised as a universal uncertainty resolution process applied to the general patient population. On an independent test set, RareAlert, a Qwen3-4B based model trained with calibrated reasoning signals, achieved an AUC of 0.917, outperforming the best machine learning ensemble and all evaluated LLMs, including GPT-5, DeepSeek-R1, Claude-3.7-Sonnet, o3-mini, Gemini-2.5-Pro, and Qwen3-235B. These findings demonstrate the diversity in LLM medical reasoning and the effectiveness of aligning such reasoning in highly uncertain clinical tasks. By incorporating calibrated reasoning into a single model, RareAlert enables accurate, privacy-preserving, and scalable rare disease risk screening suitable for large-scale local deployment.
Abstract:Large Language Models (LLMs) have achieved rapid progress in Chinese language understanding, yet accurately evaluating their capabilities remains challenged by benchmark saturation and prohibitive computational costs. While static leaderboards provide snapshot rankings, they often mask the structural trade-offs between capabilities. In this work, we present ReLE (Robust Efficient Live Evaluation), a scalable system designed to diagnose Capability Anisotropy, the non-uniformity of model performance across domains. Using ReLE, we evaluate 304 models (189 commercial, 115 open-source) across a Domain $\times$ Capability orthogonal matrix comprising 207,843 samples. We introduce two methodological contributions to address current evaluation pitfalls: (1) A Symbolic-Grounded Hybrid Scoring Mechanism that eliminates embedding-based false positives in reasoning tasks; (2) A Dynamic Variance-Aware Scheduler based on Neyman allocation with noise correction, which reduces compute costs by 70\% compared to full-pass evaluations while maintaining a ranking correlation of $ρ=0.96$. Our analysis reveals that aggregate rankings are highly sensitive to weighting schemes: models exhibit a Rank Stability Amplitude (RSA) of 11.4 in ReLE versus $\sim$5.0 in traditional benchmarks, confirming that modern models are highly specialized rather than generally superior. We position ReLE not as a replacement for comprehensive static benchmarks, but as a high-frequency diagnostic monitor for the evolving model landscape.
Abstract:Existing 3D human motion generation and understanding methods often exhibit limited interpretability, restricting effective mutual enhancement between these inherently related tasks. While current unified frameworks based on large language models (LLMs) leverage linguistic priors, they frequently encounter challenges in semantic alignment and task coherence. Moreover, the next-token prediction paradigm in LLMs is ill-suited for motion sequences, causing cumulative prediction errors. To address these limitations, we propose UniMo, a novel framework that integrates motion-language information and interpretable chain of thought (CoT) reasoning into the LLM via supervised fine-tuning (SFT). We further introduce reinforcement learning with Group Relative Policy Optimization (GRPO) as a post-training strategy that optimizes over groups of tokens to enforce structural correctness and semantic alignment, mitigating cumulative errors in motion token prediction. Extensive experiments demonstrate that UniMo significantly outperforms existing unified and task-specific models, achieving state-of-the-art performance in both motion generation and understanding.
Abstract:LLM role-playing aims to portray arbitrary characters in interactive narratives, yet existing systems often suffer from limited immersion and adaptability. They typically under-model dynamic environmental information and assume largely static scenes and casts, offering insufficient support for multi-character orchestration, scene transitions, and on-the-fly character introduction. We propose an adaptive multi-agent role-playing framework, AdaMARP, featuring an immersive message format that interleaves [Thought], (Action), <Environment>, and Speech, together with an explicit Scene Manager that governs role-playing through discrete actions (init_scene, pick_speaker, switch_scene, add_role, end) accompanied by rationales. To train these capabilities, we construct AdaRPSet for the Actor Model and AdaSMSet for supervising orchestration decisions, and introduce AdaptiveBench for trajectory-level evaluation. Experiments across multiple backbones and model scales demonstrate consistent improvements: AdaRPSet enhances character consistency, environment grounding, and narrative coherence, with an 8B actor outperforming several commercial LLMs, while AdaSMSet enables smoother scene transitions and more natural role introductions, surpassing Claude Sonnet 4.5 using only a 14B LLM.
Abstract:Multimodal decentralized federated learning (DFL) is challenging because agents differ in available modalities and model architectures, yet must collaborate over peer-to-peer (P2P) networks without a central coordinator. Standard multimodal pipelines learn a single shared embedding across all modalities. In DFL, such a monolithic representation induces gradient misalignment between uni- and multimodal agents; as a result, it suppresses heterogeneous sharing and cross-modal interaction. We present PARSE, a multimodal DFL framework that operationalizes partial information decomposition (PID) in a server-free setting. Each agent performs feature fission to factorize its latent representation into redundant, unique, and synergistic slices. P2P knowledge sharing among heterogeneous agents is enabled by slice-level partial alignment: only semantically shareable branches are exchanged among agents that possess the corresponding modality. By removing the need for central coordination and gradient surgery, PARSE resolves uni-/multimodal gradient conflicts, thereby overcoming the multimodal DFL dilemma while remaining compatible with standard DFL constraints. Across benchmarks and agent mixes, PARSE yields consistent gains over task-, modality-, and hybrid-sharing DFL baselines. Ablations on fusion operators and split ratios, together with qualitative visualizations, further demonstrate the efficiency and robustness of the proposed design.
Abstract:Incomplete multi-view clustering (IMVC) aims to discover shared cluster structures from multi-view data with partial observations. The core challenges lie in accurately imputing missing views without introducing bias, while maintaining semantic consistency across views and compactness within clusters. To address these challenges, we propose DIMVC-HIA, a novel deep IMVC framework that integrates hierarchical imputation and alignment with four key components: (1) view-specific autoencoders for latent feature extraction, coupled with a view-shared clustering predictor to produce soft cluster assignments; (2) a hierarchical imputation module that first estimates missing cluster assignments based on cross-view contrastive similarity, and then reconstructs missing features using intra-view, intra-cluster statistics; (3) an energy-based semantic alignment module, which promotes intra-cluster compactness by minimizing energy variance around low-energy cluster anchors; and (4) a contrastive assignment alignment module, which enhances cross-view consistency and encourages confident, well-separated cluster predictions. Experiments on benchmarks demonstrate that our framework achieves superior performance under varying levels of missingness.
Abstract:Retrieval-Augmented Generation (RAG) has emerged as an important means of enhancing the performance of large language models (LLMs) in knowledge-intensive tasks. However, most existing RAG strategies treat retrieved passages in a flat and unstructured way, which prevents the model from capturing structural cues and constrains its ability to synthesize knowledge from dispersed evidence across documents. To overcome these limitations, we propose Disco-RAG, a discourse-aware framework that explicitly injects discourse signals into the generation process. Our method constructs intra-chunk discourse trees to capture local hierarchies and builds inter-chunk rhetorical graphs to model cross-passage coherence. These structures are jointly integrated into a planning blueprint that conditions the generation. Experiments on question answering and long-document summarization benchmarks show the efficacy of our approach. Disco-RAG achieves state-of-the-art results on the benchmarks without fine-tuning. These findings underscore the important role of discourse structure in advancing RAG systems.