Abstract:Meta learning is a promising paradigm in the era of large models and task distributional robustness has become an indispensable consideration in real-world scenarios. Recent advances have examined the effectiveness of tail task risk minimization in fast adaptation robustness improvement \citep{wang2023simple}. This work contributes to more theoretical investigations and practical enhancements in the field. Specifically, we reduce the distributionally robust strategy to a max-min optimization problem, constitute the Stackelberg equilibrium as the solution concept, and estimate the convergence rate. In the presence of tail risk, we further derive the generalization bound, establish connections with estimated quantiles, and practically improve the studied strategy. Accordingly, extensive evaluations demonstrate the significance of our proposal and its scalability to multimodal large models in boosting robustness.
Abstract:Internet services have led to the eruption of traffic, and machine learning on these Internet data has become an indispensable tool, especially when the application is risk-sensitive. This paper focuses on network traffic classification in the presence of class imbalance, which fundamentally and ubiquitously exists in Internet data analysis. This existence of class imbalance mostly drifts the optimal decision boundary, resulting in a less optimal solution for machine learning models. To alleviate the effect, we propose to design strategies for alleviating the class imbalance through the lens of group distributionally robust optimization. Our approach iteratively updates the non-parametric weights for separate classes and optimizes the learning model by minimizing reweighted losses. We interpret the optimization steps from a Stackelberg game and perform extensive experiments on typical benchmarks. Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction.
Abstract:Meta-learning is characterized by its ability to learn how to learn, enabling the adaptation of learning strategies across different tasks. Recent research introduced the Meta-Thompson Sampling (Meta-TS), which meta-learns an unknown prior distribution sampled from a meta-prior by interacting with bandit instances drawn from it. However, its analysis was limited to Gaussian bandit. The contextual multi-armed bandit framework is an extension of the Gaussian Bandit, which challenges agent to utilize context vectors to predict the most valuable arms, optimally balancing exploration and exploitation to minimize regret over time. This paper introduces Meta-TSLB algorithm, a modified Meta-TS for linear contextual bandits. We theoretically analyze Meta-TSLB and derive an $ O((m+\log(m))\sqrt{n\log(n)})$ bound on its Bayes regret, in which $m$ represents the number of bandit instances, and $n$ the number of rounds of Thompson Sampling. Additionally, our work complements the analysis of Meta-TS for linear contextual bandits. The performance of Meta-TSLB is evaluated experimentally under different settings, and we experimente and analyze the generalization capability of Meta-TSLB, showcasing its potential to adapt to unseen instances.
Abstract:Code generation has been greatly enhanced by the profound advancements in Large Language Models (LLMs) recently. Nevertheless, such LLM-based code generation approaches still struggle to generate error-free code in a few tries when faced with complex problems. To address this, the prevailing strategy is to sample a huge number of candidate programs, with the hope of any one in them could work. However, users of code generation systems usually expect to find a correct program by reviewing or testing only a small number of code candidates. Otherwise, the system would be unhelpful. In this paper, we propose Top Pass, a code ranking approach that identifies potential correct solutions from a large number of candidates. Top Pass directly optimizes the pass@k loss function, enhancing the quality at the top of the candidate list. This enables the user to find the correct solution within as few tries as possible. Experimental results on four benchmarks indicate that our Top Pass method enhances the usability of code generation models by producing better ranking results, particularly achieving a 32.9\% relative improvement in pass@1 on CodeContests when compared to the state-of-the-art ranking method.
Abstract:Meta learning is a promising paradigm to enable skill transfer across tasks. Most previous methods employ the empirical risk minimization principle in optimization. However, the resulting worst fast adaptation to a subset of tasks can be catastrophic in risk-sensitive scenarios. To robustify fast adaptation, this paper optimizes meta learning pipelines from a distributionally robust perspective and meta trains models with the measure of expected tail risk. We take the two-stage strategy as heuristics to solve the robust meta learning problem, controlling the worst fast adaptation cases at a certain probabilistic level. Experimental results show that our simple method can improve the robustness of meta learning to task distributions and reduce the conditional expectation of the worst fast adaptation risk.
Abstract:The concept of GenAI has been developed for decades. Until recently, it has impressed us with substantial breakthroughs in natural language processing and computer vision, actively engaging in industrial scenarios. Noticing the practical challenges, e.g., limited learning resources, and overly dependencies on scientific discovery empiricism, we nominate large-scale generative simulation artificial intelligence (LS-GenAI) as the next hotspot for GenAI to connect.
Abstract:Weakly supervised learning aims to empower machine learning when the perfect supervision is unavailable, which has drawn great attention from researchers. Among various types of weak supervision, one of the most challenging cases is to learn from multiple unlabeled (U) datasets with only a little knowledge of the class priors, or U$^m$ learning for short. In this paper, we study the problem of building an AUC (area under ROC curve) optimization model from multiple unlabeled datasets, which maximizes the pairwise ranking ability of the classifier. We propose U$^m$-AUC, an AUC optimization approach that converts the U$^m$ data into a multi-label AUC optimization problem, and can be trained efficiently. We show that the proposed U$^m$-AUC is effective theoretically and empirically.
Abstract:Since acquiring perfect supervision is usually difficult, real-world machine learning tasks often confront inaccurate, incomplete, or inexact supervision, collectively referred to as weak supervision. In this work, we present WSAUC, a unified framework for weakly supervised AUC optimization problems, which covers noisy label learning, positive-unlabeled learning, multi-instance learning, and semi-supervised learning scenarios. Within the WSAUC framework, we first frame the AUC optimization problems in various weakly supervised scenarios as a common formulation of minimizing the AUC risk on contaminated sets, and demonstrate that the empirical risk minimization problems are consistent with the true AUC. Then, we introduce a new type of partial AUC, specifically, the reversed partial AUC (rpAUC), which serves as a robust training objective for AUC maximization in the presence of contaminated labels. WSAUC offers a universal solution for AUC optimization in various weakly supervised scenarios by maximizing the empirical rpAUC. Theoretical and experimental results under multiple settings support the effectiveness of WSAUC on a range of weakly supervised AUC optimization tasks.
Abstract:Code generation aims to automatically generate source code from high-level task specifications, which can significantly increase productivity of software engineering. Recently, approaches based on large language models (LLMs) have shown remarkable code generation abilities on simple tasks. However, generate code for more complex tasks, such as competition-level problems, remains challenging. In this paper, we introduce Brainstorm framework for code generation. It leverages a brainstorming step that generates and selects diverse thoughts on the problem to facilitate algorithmic reasoning, where the thoughts are possible blueprint of solving the problem. We demonstrate that Brainstorm significantly enhances the ability of LLMs to solve competition-level programming problems, resulting in a more than 50% increase in the pass@$k$ metrics for ChatGPT on the CodeContests benchmark, achieving state-of-the-art performance. Furthermore, our experiments conducted on LeetCode contests show that our framework boosts the ability of ChatGPT to a level comparable to that of human programmers.
Abstract:Embedding real-world networks presents challenges because it is not clear how to identify their latent geometries. Embedding some disassortative networks, such as scale-free networks, to the Euclidean space has been shown to incur distortions. Embedding scale-free networks to hyperbolic spaces offer an exciting alternative but incurs distortions when embedding assortative networks with latent geometries not hyperbolic. We propose an inductive model that leverages both the expressiveness of GCNs and trivial bundle to learn inductive node representations for networks with or without node features. A trivial bundle is a simple case of fiber bundles,a space that is globally a product space of its base space and fiber. The coordinates of base space and those of fiber can be used to express the assortative and disassortative factors in generating edges. Therefore, the model has the ability to learn embeddings that can express those factors. In practice, it reduces errors for link prediction and node classification when compared to the Euclidean and hyperbolic GCNs.