Abstract:Meta learning is a promising paradigm in the era of large models and task distributional robustness has become an indispensable consideration in real-world scenarios. Recent advances have examined the effectiveness of tail task risk minimization in fast adaptation robustness improvement \citep{wang2023simple}. This work contributes to more theoretical investigations and practical enhancements in the field. Specifically, we reduce the distributionally robust strategy to a max-min optimization problem, constitute the Stackelberg equilibrium as the solution concept, and estimate the convergence rate. In the presence of tail risk, we further derive the generalization bound, establish connections with estimated quantiles, and practically improve the studied strategy. Accordingly, extensive evaluations demonstrate the significance of our proposal and its scalability to multimodal large models in boosting robustness.
Abstract:Internet services have led to the eruption of traffic, and machine learning on these Internet data has become an indispensable tool, especially when the application is risk-sensitive. This paper focuses on network traffic classification in the presence of class imbalance, which fundamentally and ubiquitously exists in Internet data analysis. This existence of class imbalance mostly drifts the optimal decision boundary, resulting in a less optimal solution for machine learning models. To alleviate the effect, we propose to design strategies for alleviating the class imbalance through the lens of group distributionally robust optimization. Our approach iteratively updates the non-parametric weights for separate classes and optimizes the learning model by minimizing reweighted losses. We interpret the optimization steps from a Stackelberg game and perform extensive experiments on typical benchmarks. Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction.
Abstract:Meta-learning is a practical learning paradigm to transfer skills across tasks from a few examples. Nevertheless, the existence of task distribution shifts tends to weaken meta-learners' generalization capability, particularly when the task distribution is naively hand-crafted or based on simple priors that fail to cover typical scenarios sufficiently. Here, we consider explicitly generative modeling task distributions placed over task identifiers and propose robustifying fast adaptation from adversarial training. Our approach, which can be interpreted as a model of a Stackelberg game, not only uncovers the task structure during problem-solving from an explicit generative model but also theoretically increases the adaptation robustness in worst cases. This work has practical implications, particularly in dealing with task distribution shifts in meta-learning, and contributes to theoretical insights in the field. Our method demonstrates its robustness in the presence of task subpopulation shifts and improved performance over SOTA baselines in extensive experiments. The project is available at https://sites.google.com/view/ar-metalearn.
Abstract:Meta learning is a promising paradigm to enable skill transfer across tasks. Most previous methods employ the empirical risk minimization principle in optimization. However, the resulting worst fast adaptation to a subset of tasks can be catastrophic in risk-sensitive scenarios. To robustify fast adaptation, this paper optimizes meta learning pipelines from a distributionally robust perspective and meta trains models with the measure of expected tail risk. We take the two-stage strategy as heuristics to solve the robust meta learning problem, controlling the worst fast adaptation cases at a certain probabilistic level. Experimental results show that our simple method can improve the robustness of meta learning to task distributions and reduce the conditional expectation of the worst fast adaptation risk.
Abstract:The concept of GenAI has been developed for decades. Until recently, it has impressed us with substantial breakthroughs in natural language processing and computer vision, actively engaging in industrial scenarios. Noticing the practical challenges, e.g., limited learning resources, and overly dependencies on scientific discovery empiricism, we nominate large-scale generative simulation artificial intelligence (LS-GenAI) as the next hotspot for GenAI to connect.