Abstract:3D Gaussian Splatting (3DGS) has emerged as a novel paradigm for 3D reconstruction from satellite imagery. However, in multi-temporal satellite images, prevalent shadows exhibit significant inconsistencies due to varying illumination conditions. To address this, we propose ShadowGS, a novel framework based on 3DGS. It leverages a physics-based rendering equation from remote sensing, combined with an efficient ray marching technique, to precisely model geometrically consistent shadows while maintaining efficient rendering. Additionally, it effectively disentangles different illumination components and apparent attributes in the scene. Furthermore, we introduce a shadow consistency constraint that significantly enhances the geometric accuracy of 3D reconstruction. We also incorporate a novel shadow map prior to improve performance with sparse-view inputs. Extensive experiments demonstrate that ShadowGS outperforms current state-of-the-art methods in shadow decoupling accuracy, 3D reconstruction precision, and novel view synthesis quality, with only a few minutes of training. ShadowGS exhibits robust performance across various settings, including RGB, pansharpened, and sparse-view satellite inputs.
Abstract:4D spatial intelligence involves perceiving and processing how objects move or change over time. Humans naturally possess 4D spatial intelligence, supporting a broad spectrum of spatial reasoning abilities. To what extent can Multimodal Large Language Models (MLLMs) achieve human-level 4D spatial intelligence? In this work, we present Spatial4D-Bench, a versatile 4D spatial intelligence benchmark designed to comprehensively assess the 4D spatial reasoning abilities of MLLMs. Unlike existing spatial intelligence benchmarks that are often small-scale or limited in diversity, Spatial4D-Bench provides a large-scale, multi-task evaluation benchmark consisting of ~40,000 question-answer pairs covering 18 well-defined tasks. We systematically organize these tasks into six cognitive categories: object understanding, scene understanding, spatial relationship understanding, spatiotemporal relationship understanding, spatial reasoning and spatiotemporal reasoning. Spatial4D-Bench thereby offers a structured and comprehensive benchmark for evaluating the spatial cognition abilities of MLLMs, covering a broad spectrum of tasks that parallel the versatility of human spatial intelligence. We benchmark various state-of-the-art open-source and proprietary MLLMs on Spatial4D-Bench and reveal their substantial limitations in a wide variety of 4D spatial reasoning aspects, such as route plan, action recognition, and physical plausibility reasoning. We hope that the findings provided in this work offer valuable insights to the community and that our benchmark can facilitate the development of more capable MLLMs toward human-level 4D spatial intelligence. More resources can be found on our project page.
Abstract:Humans learn locomotion through visual observation, interpreting visual content first before imitating actions. However, state-of-the-art humanoid locomotion systems rely on either curated motion capture trajectories or sparse text commands, leaving a critical gap between visual understanding and control. Text-to-motion methods suffer from semantic sparsity and staged pipeline errors, while video-based approaches only perform mechanical pose mimicry without genuine visual understanding. We propose RoboMirror, the first retargeting-free video-to-locomotion framework embodying "understand before you imitate". Leveraging VLMs, it distills raw egocentric/third-person videos into visual motion intents, which directly condition a diffusion-based policy to generate physically plausible, semantically aligned locomotion without explicit pose reconstruction or retargeting. Extensive experiments validate the effectiveness of RoboMirror, it enables telepresence via egocentric videos, drastically reduces third-person control latency by 80%, and achieves a 3.7% higher task success rate than baselines. By reframing humanoid control around video understanding, we bridge the visual understanding and action gap.
Abstract:Humans intuitively move to sound, but current humanoid robots lack expressive improvisational capabilities, confined to predefined motions or sparse commands. Generating motion from audio and then retargeting it to robots relies on explicit motion reconstruction, leading to cascaded errors, high latency, and disjointed acoustic-actuation mapping. We propose RoboPerform, the first unified audio-to-locomotion framework that can directly generate music-driven dance and speech-driven co-speech gestures from audio. Guided by the core principle of "motion = content + style", the framework treats audio as implicit style signals and eliminates the need for explicit motion reconstruction. RoboPerform integrates a ResMoE teacher policy for adapting to diverse motion patterns and a diffusion-based student policy for audio style injection. This retargeting-free design ensures low latency and high fidelity. Experimental validation shows that RoboPerform achieves promising results in physical plausibility and audio alignment, successfully transforming robots into responsive performers capable of reacting to audio.
Abstract:4D millimeter-wave (mmWave) radar has been widely adopted in autonomous driving and robot perception due to its low cost and all-weather robustness. However, its inherent sparsity and limited semantic richness significantly constrain perception capability. Recently, fusing camera data with 4D radar has emerged as a promising cost effective solution, by exploiting the complementary strengths of the two modalities. Nevertheless, point-cloud-based radar often suffer from information loss introduced by multi-stage signal processing, while directly utilizing raw 4D radar data incurs prohibitive computational costs. To address these challenges, we propose WRCFormer, a novel 3D object detection framework that fuses raw radar cubes with camera inputs via multi-view representations of the decoupled radar cube. Specifically, we design a Wavelet Attention Module as the basic module of wavelet-based Feature Pyramid Network (FPN) to enhance the representation of sparse radar signals and image data. We further introduce a two-stage query-based, modality-agnostic fusion mechanism termed Geometry-guided Progressive Fusion to efficiently integrate multi-view features from both modalities. Extensive experiments demonstrate that WRCFormer achieves state-of-the-art performance on the K-Radar benchmarks, surpassing the best model by approximately 2.4% in all scenarios and 1.6% in the sleet scenario, highlighting its robustness under adverse weather conditions.
Abstract:Autonomous exploration is a fundamental capability that tightly integrates perception, planning, control, and motion execution. It plays a critical role in a wide range of applications, including indoor target search, mapping of extreme environments, resource exploration, etc. Despite significant progress in individual components, a holistic and practical description of a completely autonomous exploration system, encompassing both hardware and software, remains scarce. In this paper, we present GuangMing-Explorer, a fully integrated autonomous exploration platform designed for robust operation across diverse environments. We provide a comprehensive overview of the system architecture, including hardware design, software stack, algorithm deployment, and experimental configuration. Extensive real-world experiments demonstrate the platform's effectiveness and efficiency in executing autonomous exploration tasks, highlighting its potential for practical deployment in complex and unstructured environments.
Abstract:Video data is more cost-effective than motion capture data for learning 3D character motion controllers, yet synthesizing realistic and diverse behaviors directly from videos remains challenging. Previous approaches typically rely on off-the-shelf motion reconstruction techniques to obtain 3D trajectories for physics-based imitation. These reconstruction methods struggle with generalizability, as they either require 3D training data (potentially scarce) or fail to produce physically plausible poses, hindering their application to challenging scenarios like human-object interaction (HOI) or non-human characters. We tackle this challenge by introducing Mimic2DM, a novel motion imitation framework that learns the control policy directly and solely from widely available 2D keypoint trajectories extracted from videos. By minimizing the reprojection error, we train a general single-view 2D motion tracking policy capable of following arbitrary 2D reference motions in physics simulation, using only 2D motion data. The policy, when trained on diverse 2D motions captured from different or slightly different viewpoints, can further acquire 3D motion tracking capabilities by aggregating multiple views. Moreover, we develop a transformer-based autoregressive 2D motion generator and integrate it into a hierarchical control framework, where the generator produces high-quality 2D reference trajectories to guide the tracking policy. We show that the proposed approach is versatile and can effectively learn to synthesize physically plausible and diverse motions across a range of domains, including dancing, soccer dribbling, and animal movements, without any reliance on explicit 3D motion data. Project Website: https://jiann-li.github.io/mimic2dm/
Abstract:Vision-Language-Action (VLA) models have shown great performance in robotic manipulation by mapping visual observations and language instructions directly to actions. However, they remain brittle under distribution shifts: when test scenarios change, VLAs often reproduce memorized trajectories instead of adapting to the updated scene, which is a failure mode we refer to as the "Memory Trap". This limitation stems from the end-to-end design, which lacks explicit 3D spatial reasoning and prevents reliable identification of actionable regions in unfamiliar environments. To compensate for this missing spatial understanding, 3D Spatial Affordance Fields (SAFs) can provide a geometric representation that highlights where interactions are physically feasible, offering explicit cues about regions the robot should approach or avoid. We therefore introduce Affordance Field Intervention (AFI), a lightweight hybrid framework that uses SAFs as an on-demand plug-in to guide VLA behavior. Our system detects memory traps through proprioception, repositions the robot to recent high-affordance regions, and proposes affordance-driven waypoints that anchor VLA-generated actions. A SAF-based scorer then selects trajectories with the highest cumulative affordance. Extensive experiments demonstrate that our method achieves an average improvement of 23.5% across different VLA backbones ($π_{0}$ and $π_{0.5}$) under out-of-distribution scenarios on real-world robotic platforms, and 20.2% on the LIBERO-Pro benchmark, validating its effectiveness in enhancing VLA robustness to distribution shifts.
Abstract:Autoregressive models have recently shown great promise in visual generation by leveraging discrete token sequences akin to language modeling. However, existing approaches often suffer from inefficiency, either due to token-by-token decoding or the complexity of multi-scale representations. In this work, we introduce Expanding Autoregressive Representation (EAR), a novel generation paradigm that emulates the human visual system's center-outward perception pattern. EAR unfolds image tokens in a spiral order from the center and progressively expands outward, preserving spatial continuity and enabling efficient parallel decoding. To further enhance flexibility and speed, we propose a length-adaptive decoding strategy that dynamically adjusts the number of tokens predicted at each step. This biologically inspired design not only reduces computational cost but also improves generation quality by aligning the generation order with perceptual relevance. Extensive experiments on ImageNet demonstrate that EAR achieves state-of-the-art trade-offs between fidelity and efficiency on single-scale autoregressive models, setting a new direction for scalable and cognitively aligned autoregressive image generation.
Abstract:Visual Autoregressive (VAR) models enable efficient image generation via next-scale prediction but face escalating computational costs as sequence length grows. Existing static pruning methods degrade performance by permanently removing weights or tokens, disrupting pretrained dependencies. To address this, we propose ActVAR, a dynamic activation framework that introduces dual sparsity across model weights and token sequences to enhance efficiency without sacrificing capacity. ActVAR decomposes feedforward networks (FFNs) into lightweight expert sub-networks and employs a learnable router to dynamically select token-specific expert subsets based on content. Simultaneously, a gated token selector identifies high-update-potential tokens for computation while reconstructing unselected tokens to preserve global context and sequence alignment. Training employs a two-stage knowledge distillation strategy, where the original VAR model supervises the learning of routing and gating policies to align with pretrained knowledge. Experiments on the ImageNet $256\times 256$ benchmark demonstrate that ActVAR achieves up to $21.2\%$ FLOPs reduction with minimal performance degradation.