Abstract:Standing-up control is crucial for humanoid robots, with the potential for integration into current locomotion and loco-manipulation systems, such as fall recovery. Existing approaches are either limited to simulations that overlook hardware constraints or rely on predefined ground-specific motion trajectories, failing to enable standing up across postures in real-world scenes. To bridge this gap, we present HoST (Humanoid Standing-up Control), a reinforcement learning framework that learns standing-up control from scratch, enabling robust sim-to-real transfer across diverse postures. HoST effectively learns posture-adaptive motions by leveraging a multi-critic architecture and curriculum-based training on diverse simulated terrains. To ensure successful real-world deployment, we constrain the motion with smoothness regularization and implicit motion speed bound to alleviate oscillatory and violent motions on physical hardware, respectively. After simulation-based training, the learned control policies are directly deployed on the Unitree G1 humanoid robot. Our experimental results demonstrate that the controllers achieve smooth, stable, and robust standing-up motions across a wide range of laboratory and outdoor environments. Videos are available at https://taohuang13.github.io/humanoid-standingup.github.io/.
Abstract:The widespread deployment of deep learning models in privacy-sensitive domains has amplified concerns regarding privacy risks, particularly those stemming from gradient leakage during training. Current privacy assessments primarily rely on post-training attack simulations. However, these methods are inherently reactive, unable to encompass all potential attack scenarios, and often based on idealized adversarial assumptions. These limitations underscore the need for proactive approaches to privacy risk assessment during the training process. To address this gap, we propose the concept of privacy tokens, which are derived directly from private gradients during training. Privacy tokens encapsulate gradient features and, when combined with data features, offer valuable insights into the extent of private information leakage from training data, enabling real-time measurement of privacy risks without relying on adversarial attack simulations. Additionally, we employ Mutual Information (MI) as a robust metric to quantify the relationship between training data and gradients, providing precise and continuous assessments of privacy leakage throughout the training process. Extensive experiments validate our framework, demonstrating the effectiveness of privacy tokens and MI in identifying and quantifying privacy risks. This proactive approach marks a significant advancement in privacy monitoring, promoting the safer deployment of deep learning models in sensitive applications.
Abstract:The widespread deployment of deep learning models in privacy-sensitive domains has amplified concerns regarding privacy risks, particularly those stemming from gradient leakage during training. Current privacy assessments primarily rely on post-training attack simulations. However, these methods are inherently reactive, unable to encompass all potential attack scenarios, and often based on idealized adversarial assumptions. These limitations underscore the need for proactive approaches to privacy risk assessment during the training process. To address this gap, we propose the concept of privacy tokens, which are derived directly from private gradients during training. Privacy tokens encapsulate gradient features and, when combined with data features, offer valuable insights into the extent of private information leakage from training data, enabling real-time measurement of privacy risks without relying on adversarial attack simulations. Additionally, we employ Mutual Information (MI) as a robust metric to quantify the relationship between training data and gradients, providing precise and continuous assessments of privacy leakage throughout the training process. Extensive experiments validate our framework, demonstrating the effectiveness of privacy tokens and MI in identifying and quantifying privacy risks. This proactive approach marks a significant advancement in privacy monitoring, promoting the safer deployment of deep learning models in sensitive applications.
Abstract:Vision-Language-Action (VLA) model can process instructions and visual perception to directly generate actions as output in an end-to-end fashion due to its strong multi-modal reasoning capabilities. While the performance of VLA models is promising, their computational cost can be substantial. This raises challenge for applying them on robotics tasks, which requires real-time decision-making to respond quickly to environmental changes. Since robotic control involves sequential decision-making, the visual input often exhibits minimal variation between successive steps. A natural idea is to reuse the computational results of unchanged visual tokens from the last step. Motivated by this idea, we propose VLA-Cache, an efficient vision-language-action model. VLA-Cache incorporates a token-selection mechanism that compares the visual input at each step with the input from the previous step, adaptively identifying visual tokens with minimal changes. The computational results for these unchanged tokens are then reused in subsequent steps via KV-cache, thereby significantly improving the efficiency of the VLA-Cache model. Experimental results on both simulation (e.g., LIBERO benchmark and SIMPLER) and real-world robot valid VLA-Cache can achieve practical acceleration with minimal sacrifice in success rate.
Abstract:Robust density estimation refers to the consistent estimation of the density function even when the data is contaminated by outliers. We find that existing forest density estimation at a certain point is inherently resistant to the outliers outside the cells containing the point, which we call \textit{non-local outliers}, but not resistant to the rest \textit{local outliers}. To achieve robustness against all outliers, we propose an ensemble learning algorithm called \textit{medians of forests for robust density estimation} (\textit{MFRDE}), which adopts a pointwise median operation on forest density estimators fitted on subsampled datasets. Compared to existing robust kernel-based methods, MFRDE enables us to choose larger subsampling sizes, sacrificing less accuracy for density estimation while achieving robustness. On the theoretical side, we introduce the local outlier exponent to quantify the number of local outliers. Under this exponent, we show that even if the number of outliers reaches a certain polynomial order in the sample size, MFRDE is able to achieve almost the same convergence rate as the same algorithm on uncontaminated data, whereas robust kernel-based methods fail. On the practical side, real data experiments show that MFRDE outperforms existing robust kernel-based methods. Moreover, we apply MFRDE to anomaly detection to showcase a further application.
Abstract:We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.
Abstract:Visual encoders are fundamental components in vision-language models (VLMs), each showcasing unique strengths derived from various pre-trained visual foundation models. To leverage the various capabilities of these encoders, recent studies incorporate multiple encoders within a single VLM, leading to a considerable increase in computational cost. In this paper, we present Mixture-of-Visual-Encoder Knowledge Distillation (MoVE-KD), a novel framework that distills the unique proficiencies of multiple vision encoders into a single, efficient encoder model. Specifically, to mitigate conflicts and retain the unique characteristics of each teacher encoder, we employ low-rank adaptation (LoRA) and mixture-of-experts (MoEs) to selectively activate specialized knowledge based on input features, enhancing both adaptability and efficiency. To regularize the KD process and enhance performance, we propose an attention-based distillation strategy that adaptively weighs the different visual encoders and emphasizes valuable visual tokens, reducing the burden of replicating comprehensive but distinct features from multiple teachers. Comprehensive experiments on popular VLMs, such as LLaVA and LLaVA-NeXT, validate the effectiveness of our method. The code will be released.
Abstract:KV cache pruning has emerged as a promising technique for reducing memory and computation costs in long-context auto-regressive generation. Existing methods for vision-language models (VLMs) typically rely on self-attention scores from large language models (LLMs) to identify and prune irrelevant tokens. However, these approaches overlook the inherent distributional discrepancies between modalities, often leading to inaccurate token importance estimation and the over-pruning of critical visual tokens. To address this, we propose decomposing attention scores into intra-modality attention (within the same modality) and inter-modality attention (across modalities), enabling more precise KV cache pruning by independently managing these distinct attention types. Additionally, we introduce an n-softmax function to counteract distribution shifts caused by pruning, preserving the original smoothness of attention scores and ensuring stable performance. Our final training-free method, \textbf{C}ross-\textbf{S}elf \textbf{P}runing (CSP), achieves competitive performance compared to models with full KV caches while significantly outperforming previous pruning methods. Extensive evaluations on MileBench, a benchmark encompassing 29 multimodal datasets, demonstrate CSP's effectiveness, achieving up to a 41\% performance improvement on challenging tasks like conversational embodied dialogue while reducing the KV cache budget by 13.6\%. The code is available at https://github.com/TerryPei/CSP
Abstract:The increasing reliance on deep computer vision models that process sensitive data has raised significant privacy concerns, particularly regarding the exposure of intermediate results in hidden layers. While traditional privacy risk assessment techniques focus on protecting overall model outputs, they often overlook vulnerabilities within these intermediate representations. Current privacy risk assessment techniques typically rely on specific attack simulations to assess risk, which can be computationally expensive and incomplete. This paper introduces a novel approach to measuring privacy risks in deep computer vision models based on the Degrees of Freedom (DoF) and sensitivity of intermediate outputs, without requiring adversarial attack simulations. We propose a framework that leverages DoF to evaluate the amount of information retained in each layer and combines this with the rank of the Jacobian matrix to assess sensitivity to input variations. This dual analysis enables systematic measurement of privacy risks at various model layers. Our experimental validation on real-world datasets demonstrates the effectiveness of this approach in providing deeper insights into privacy risks associated with intermediate representations.
Abstract:In contrast to quadruped robots that can navigate diverse terrains using a "blind" policy, humanoid robots require accurate perception for stable locomotion due to their high degrees of freedom and inherently unstable morphology. However, incorporating perceptual signals often introduces additional disturbances to the system, potentially reducing its robustness, generalizability, and efficiency. This paper presents the Perceptive Internal Model (PIM), which relies on onboard, continuously updated elevation maps centered around the robot to perceive its surroundings. We train the policy using ground-truth obstacle heights surrounding the robot in simulation, optimizing it based on the Hybrid Internal Model (HIM), and perform inference with heights sampled from the constructed elevation map. Unlike previous methods that directly encode depth maps or raw point clouds, our approach allows the robot to perceive the terrain beneath its feet clearly and is less affected by camera movement or noise. Furthermore, since depth map rendering is not required in simulation, our method introduces minimal additional computational costs and can train the policy in 3 hours on an RTX 4090 GPU. We verify the effectiveness of our method across various humanoid robots, various indoor and outdoor terrains, stairs, and various sensor configurations. Our method can enable a humanoid robot to continuously climb stairs and has the potential to serve as a foundational algorithm for the development of future humanoid control methods.