Abstract:Decision-focused learning (DFL) offers an end-to-end approach to the predict-then-optimize (PO) framework by training predictive models directly on decision loss (DL), enhancing decision-making performance within PO contexts. However, the implementation of DFL poses distinct challenges. Primarily, DL can result in deviation from the physical significance of the predictions under limited data. Additionally, some predictive models are non-differentiable or black-box, which cannot be adjusted using gradient-based methods. To tackle the above challenges, we propose a novel framework, Decision-Focused Fine-tuning (DFF), which embeds the DFL module into the PO pipeline via a novel bias correction module. DFF is formulated as a constrained optimization problem that maintains the proximity of the DL-enhanced model to the original predictive model within a defined trust region. We theoretically prove that DFF strictly confines prediction bias within a predetermined upper bound, even with limited datasets, thereby substantially reducing prediction shifts caused by DL under limited data. Furthermore, the bias correction module can be integrated into diverse predictive models, enhancing adaptability to a broad range of PO tasks. Extensive evaluations on synthetic and real-world datasets, including network flow, portfolio optimization, and resource allocation problems with different predictive models, demonstrate that DFF not only improves decision performance but also adheres to fine-tuning constraints, showcasing robust adaptability across various scenarios.
Abstract:Quantum process tomography (QPT), used for reconstruction of an unknown quantum process from measurement data, is a fundamental tool for the diagnostic and full characterization of quantum systems. It relies on querying a set of quantum states as input to the quantum process. Previous works commonly use a straightforward strategy to select a set of quantum states randomly, overlooking differences in informativeness among quantum states. Since querying the quantum system requires multiple experiments that can be prohibitively costly, it is always the case that there are not enough quantum states for high-quality reconstruction. In this paper, we propose a general framework for active learning (AL) to adaptively select a set of informative quantum states that improves the reconstruction most efficiently. In particular, we introduce a learning framework that leverages the widely-used variational quantum circuits (VQCs) to perform the QPT task and integrate our AL algorithms into the query step. We design and evaluate three various types of AL algorithms: committee-based, uncertainty-based, and diversity-based, each exhibiting distinct advantages in terms of performance and computational cost. Additionally, we provide a guideline for selecting algorithms suitable for different scenarios. Numerical results demonstrate that our algorithms achieve significantly improved reconstruction compared to the baseline method that selects a set of quantum states randomly. Moreover, these results suggest that active learning based approaches are applicable to other complicated learning tasks in large-scale quantum information processing.
Abstract:Diffusion-based audio-driven talking avatar methods have recently gained attention for their high-fidelity, vivid, and expressive results. However, their slow inference speed limits practical applications. Despite the development of various distillation techniques for diffusion models, we found that naive diffusion distillation methods do not yield satisfactory results. Distilled models exhibit reduced robustness with open-set input images and a decreased correlation between audio and video compared to teacher models, undermining the advantages of diffusion models. To address this, we propose FADA (Fast Diffusion Avatar Synthesis with Mixed-Supervised Multi-CFG Distillation). We first designed a mixed-supervised loss to leverage data of varying quality and enhance the overall model capability as well as robustness. Additionally, we propose a multi-CFG distillation with learnable tokens to utilize the correlation between audio and reference image conditions, reducing the threefold inference runs caused by multi-CFG with acceptable quality degradation. Extensive experiments across multiple datasets show that FADA generates vivid videos comparable to recent diffusion model-based methods while achieving an NFE speedup of 4.17-12.5 times. Demos are available at our webpage http://fadavatar.github.io.
Abstract:3D point cloud registration is a fundamental problem in computer vision, computer graphics, robotics, remote sensing, and etc. Over the last thirty years, we have witnessed the amazing advancement in this area with numerous kinds of solutions. Although a handful of relevant surveys have been conducted, their coverage is still limited. In this work, we present a comprehensive survey on 3D point cloud registration, covering a set of sub-areas such as pairwise coarse registration, pairwise fine registration, multi-view registration, cross-scale registration, and multi-instance registration. The datasets, evaluation metrics, method taxonomy, discussions of the merits and demerits, insightful thoughts of future directions are comprehensively presented in this survey. The regularly updated project page of the survey is available at https://github.com/Amyyyy11/3D-Registration-in-30-Years-A-Survey.
Abstract:Accurate segmentation of Optical Coherence Tomography (OCT) images is crucial for diagnosing and monitoring retinal diseases. However, the labor-intensive nature of pixel-level annotation limits the scalability of supervised learning with large datasets. Weakly Supervised Semantic Segmentation (WSSS) provides a promising alternative by leveraging image-level labels. In this study, we propose a novel WSSS approach that integrates structural guidance with text-driven strategies to generate high-quality pseudo labels, significantly improving segmentation performance. In terms of visual information, our method employs two processing modules that exchange raw image features and structural features from OCT images, guiding the model to identify where lesions are likely to occur. In terms of textual information, we utilize large-scale pretrained models from cross-domain sources to implement label-informed textual guidance and synthetic descriptive integration with two textual processing modules that combine local semantic features with consistent synthetic descriptions. By fusing these visual and textual components within a multimodal framework, our approach enhances lesion localization accuracy. Experimental results on three OCT datasets demonstrate that our method achieves state-of-the-art performance, highlighting its potential to improve diagnostic accuracy and efficiency in medical imaging.
Abstract:Point cloud data now are popular data representations in a number of three-dimensional (3D) vision research realms. However, due to the limited performance of sensors and sensing noise, the raw data usually suffer from sparsity, noise, and incompleteness. This poses great challenges to down-stream point cloud processing tasks. In recent years, deep-learning-based point cloud enhancement methods, which aim to achieve dense, clean, and complete point clouds from low-quality raw point clouds using deep neural networks, are gaining tremendous research attention. This paper, for the first time to our knowledge, presents a comprehensive survey for deep-learning-based point cloud enhancement methods. It covers three main perspectives for point cloud enhancement, i.e., (1) denoising to achieve clean data; (2) completion to recover unseen data; (3) upsampling to obtain dense data. Our survey presents a new taxonomy for recent state-of-the-art methods and systematic experimental results on standard benchmarks. In addition, we share our insightful observations, thoughts, and inspiring future research directions for point cloud enhancement with deep learning.
Abstract:In the realm of computer vision, the perception and reconstruction of the 3D world through vision signals heavily rely on camera intrinsic parameters, which have long been a subject of intense research within the community. In practical applications, without a strong scene geometry prior like the Manhattan World assumption or special artificial calibration patterns, monocular focal length estimation becomes a challenging task. In this paper, we propose a method for monocular focal length estimation using category-level object priors. Based on two well-studied existing tasks: monocular depth estimation and category-level object canonical representation learning, our focal solver takes depth priors and object shape priors from images containing objects and estimates the focal length from triplets of correspondences in closed form. Our experiments on simulated and real world data demonstrate that the proposed method outperforms the current state-of-the-art, offering a promising solution to the long-standing monocular focal length estimation problem.
Abstract:Reliable self-localization is a foundational skill for many intelligent mobile platforms. This paper explores the use of event cameras for motion tracking thereby providing a solution with inherent robustness under difficult dynamics and illumination. In order to circumvent the challenge of event camera-based mapping, the solution is framed in a cross-modal way. It tracks a map representation that comes directly from frame-based cameras. Specifically, the proposed method operates on top of gaussian splatting, a state-of-the-art representation that permits highly efficient and realistic novel view synthesis. The key of our approach consists of a novel pose parametrization that uses a reference pose plus first order dynamics for local differential image rendering. The latter is then compared against images of integrated events in a staggered coarse-to-fine optimization scheme. As demonstrated by our results, the realistic view rendering ability of gaussian splatting leads to stable and accurate tracking across a variety of both publicly available and newly recorded data sequences.
Abstract:Under the backdrop of large-scale pre-training, large visual models (LVM) have demonstrated significant potential in image understanding. The recent emergence of the Segment Anything Model (SAM) has brought a qualitative shift in the field of image segmentation, supporting flexible interactive cues and strong learning capabilities. However, its performance often falls short in cross-domain and few-shot applications. Transferring prior knowledge from foundation models to new applications while preserving learning capabilities is worth exploring. This work proposes a task-adaptive prompt framework based on SAM, a new paradigm for Cross-dominan few-shot segmentation (CD-FSS). First, a Multi-level Feature Fusion (MFF) was used for integrated feature extraction. Besides, an additional Class Domain Task-Adaptive Auto-Prompt (CDTAP) module was combined with the segmentation branch for class-domain agnostic feature extraction and high-quality learnable prompt production. This significant advancement uses a unique generative approach to prompts alongside a comprehensive model structure and specialized prototype computation. While ensuring that the prior knowledge of SAM is not discarded, the new branch disentangles category and domain information through prototypes, guiding it in adapting the CD-FSS. We have achieved the best results on three benchmarks compared to the recent state-of-the-art (SOTA) methods. Comprehensive experiments showed that after task-specific and weighted guidance, the abundant feature information of SAM can be better learned for CD-FSS.
Abstract:With the introduction of diffusion-based video generation techniques, audio-conditioned human video generation has recently achieved significant breakthroughs in both the naturalness of motion and the synthesis of portrait details. Due to the limited control of audio signals in driving human motion, existing methods often add auxiliary spatial signals to stabilize movements, which may compromise the naturalness and freedom of motion. In this paper, we propose an end-to-end audio-only conditioned video diffusion model named Loopy. Specifically, we designed an inter- and intra-clip temporal module and an audio-to-latents module, enabling the model to leverage long-term motion information from the data to learn natural motion patterns and improving audio-portrait movement correlation. This method removes the need for manually specified spatial motion templates used in existing methods to constrain motion during inference. Extensive experiments show that Loopy outperforms recent audio-driven portrait diffusion models, delivering more lifelike and high-quality results across various scenarios.