Abstract:4D occupancy forecasting is one of the important techniques for autonomous driving, which can avoid potential risk in the complex traffic scenes. Scene flow is a crucial element to describe 4D occupancy map tendency. However, an accurate scene flow is difficult to predict in the real scene. In this paper, we find that BEV scene flow can approximately represent 3D scene flow in most traffic scenes. And coarse BEV scene flow is easy to generate. Under this thought, we propose 4D occupancy forecasting method FSF-Net based on coarse BEV scene flow. At first, we develop a general occupancy forecasting architecture based on coarse BEV scene flow. Then, to further enhance 4D occupancy feature representation ability, we propose a vector quantized based Mamba (VQ-Mamba) network to mine spatial-temporal structural scene feature. After that, to effectively fuse coarse occupancy maps forecasted from BEV scene flow and latent features, we design a U-Net based quality fusion (UQF) network to generate the fine-grained forecasting result. Extensive experiments are conducted on public Occ3D dataset. FSF-Net has achieved IoU and mIoU 9.56% and 10.87% higher than state-of-the-art method. Hence, we believe that proposed FSF-Net benefits to the safety of autonomous driving.
Abstract:The high temporal variation of the point clouds is the key challenge of 3D single-object tracking (3D SOT). Existing approaches rely on the assumption that the shape variation of the point clouds and the motion of the objects across neighboring frames are smooth, failing to cope with high temporal variation data. In this paper, we present a novel framework for 3D SOT in point clouds with high temporal variation, called HVTrack. HVTrack proposes three novel components to tackle the challenges in the high temporal variation scenario: 1) A Relative-Pose-Aware Memory module to handle temporal point cloud shape variations; 2) a Base-Expansion Feature Cross-Attention module to deal with similar object distractions in expanded search areas; 3) a Contextual Point Guided Self-Attention module for suppressing heavy background noise. We construct a dataset with high temporal variation (KITTI-HV) by setting different frame intervals for sampling in the KITTI dataset. On the KITTI-HV with 5 frame intervals, our HVTrack surpasses the state-of-the-art tracker CXTracker by 11.3%/15.7% in Success/Precision.