Abstract:4D occupancy forecasting is one of the important techniques for autonomous driving, which can avoid potential risk in the complex traffic scenes. Scene flow is a crucial element to describe 4D occupancy map tendency. However, an accurate scene flow is difficult to predict in the real scene. In this paper, we find that BEV scene flow can approximately represent 3D scene flow in most traffic scenes. And coarse BEV scene flow is easy to generate. Under this thought, we propose 4D occupancy forecasting method FSF-Net based on coarse BEV scene flow. At first, we develop a general occupancy forecasting architecture based on coarse BEV scene flow. Then, to further enhance 4D occupancy feature representation ability, we propose a vector quantized based Mamba (VQ-Mamba) network to mine spatial-temporal structural scene feature. After that, to effectively fuse coarse occupancy maps forecasted from BEV scene flow and latent features, we design a U-Net based quality fusion (UQF) network to generate the fine-grained forecasting result. Extensive experiments are conducted on public Occ3D dataset. FSF-Net has achieved IoU and mIoU 9.56% and 10.87% higher than state-of-the-art method. Hence, we believe that proposed FSF-Net benefits to the safety of autonomous driving.
Abstract:Prior image-text matching methods have shown remarkable performance on many benchmark datasets, but most of them overlook the bias in the dataset, which exists in intra-modal and inter-modal, and tend to learn the spurious correlations that extremely degrade the generalization ability of the model. Furthermore, these methods often incorporate biased external knowledge from large-scale datasets as prior knowledge into image-text matching model, which is inevitable to force model further learn biased associations. To address above limitations, this paper firstly utilizes Structural Causal Models (SCMs) to illustrate how intra- and inter-modal confounders damage the image-text matching. Then, we employ backdoor adjustment to propose an innovative Deconfounded Causal Inference Network (DCIN) for image-text matching task. DCIN (1) decomposes the intra- and inter-modal confounders and incorporates them into the encoding stage of visual and textual features, effectively eliminating the spurious correlations during image-text matching, and (2) uses causal inference to mitigate biases of external knowledge. Consequently, the model can learn causality instead of spurious correlations caused by dataset bias. Extensive experiments on two well-known benchmark datasets, i.e., Flickr30K and MSCOCO, demonstrate the superiority of our proposed method.
Abstract:Nowadays, the family of Stable Diffusion (SD) models has gained prominence for its high quality outputs and scalability. This has also raised security concerns on social media, as malicious users can create and disseminate harmful content. Existing approaches involve training components or entire SDs to embed a watermark in generated images for traceability and responsibility attribution. However, in the era of AI-generated content (AIGC), the rapid iteration of SDs renders retraining with watermark models costly. To address this, we propose a training-free plug-and-play watermark framework for SDs. Without modifying any components of SDs, we embed diverse watermarks in the latent space, adapting to the denoising process. Our experimental findings reveal that our method effectively harmonizes image quality and watermark invisibility. Furthermore, it performs robustly under various attacks. We also have validated that our method is generalized to multiple versions of SDs, even without retraining the watermark model.
Abstract:News captioning task aims to generate sentences by describing named entities or concrete events for an image with its news article. Existing methods have achieved remarkable results by relying on the large-scale pre-trained models, which primarily focus on the correlations between the input news content and the output predictions. However, the news captioning requires adhering to some fundamental rules of news reporting, such as accurately describing the individuals and actions associated with the event. In this paper, we propose the rule-driven news captioning method, which can generate image descriptions following designated rule signal. Specifically, we first design the news-aware semantic rule for the descriptions. This rule incorporates the primary action depicted in the image (e.g., "performing") and the roles played by named entities involved in the action (e.g., "Agent" and "Place"). Second, we inject this semantic rule into the large-scale pre-trained model, BART, with the prefix-tuning strategy, where multiple encoder layers are embedded with news-aware semantic rule. Finally, we can effectively guide BART to generate news sentences that comply with the designated rule. Extensive experiments on two widely used datasets (i.e., GoodNews and NYTimes800k) demonstrate the effectiveness of our method.
Abstract:News captioning aims to describe an image with its news article body as input. It greatly relies on a set of detected named entities, including real-world people, organizations, and places. This paper exploits commonsense knowledge to understand named entities for news captioning. By ``understand'', we mean correlating the news content with common sense in the wild, which helps an agent to 1) distinguish semantically similar named entities and 2) describe named entities using words outside of training corpora. Our approach consists of three modules: (a) Filter Module aims to clarify the common sense concerning a named entity from two aspects: what does it mean? and what is it related to?, which divide the common sense into explanatory knowledge and relevant knowledge, respectively. (b) Distinguish Module aggregates explanatory knowledge from node-degree, dependency, and distinguish three aspects to distinguish semantically similar named entities. (c) Enrich Module attaches relevant knowledge to named entities to enrich the entity description by commonsense information (e.g., identity and social position). Finally, the probability distributions from both modules are integrated to generate the news captions. Extensive experiments on two challenging datasets (i.e., GoodNews and NYTimes) demonstrate the superiority of our method. Ablation studies and visualization further validate its effectiveness in understanding named entities.
Abstract:In the fundamental statistics course, students are taught to remember the well-known saying: "Correlation is not Causation". Till now, statistics (i.e., correlation) have developed various successful frameworks, such as Transformer and Pre-training large-scale models, which have stacked multiple parallel self-attention blocks to imitate a wide range of tasks. However, in the causation community, how to build an integrated causal framework still remains an untouched domain despite its excellent intervention capabilities. In this paper, we propose the Causal Graph Routing (CGR) framework, an integrated causal scheme relying entirely on the intervention mechanisms to reveal the cause-effect forces hidden in data. Specifically, CGR is composed of a stack of causal layers. Each layer includes a set of parallel deconfounding blocks from different causal graphs. We combine these blocks via the concept of the proposed sufficient cause, which allows the model to dynamically select the suitable deconfounding methods in each layer. CGR is implemented as the stacked networks, integrating no confounder, back-door adjustment, front-door adjustment, and probability of sufficient cause. We evaluate this framework on two classical tasks of CV and NLP. Experiments show CGR can surpass the current state-of-the-art methods on both Visual Question Answer and Long Document Classification tasks. In particular, CGR has great potential in building the "causal" pre-training large-scale model that effectively generalizes to diverse tasks. It will improve the machines' comprehension of causal relationships within a broader semantic space.
Abstract:Image-based virtual try-on aims to synthesize a naturally dressed person image with a clothing image, which revolutionizes online shopping and inspires related topics within image generation, showing both research significance and commercial potentials. However, there is a great gap between current research progress and commercial applications and an absence of comprehensive overview towards this field to accelerate the development. In this survey, we provide a comprehensive analysis of the state-of-the-art techniques and methodologies in aspects of pipeline architecture, person representation and key modules such as try-on indication, clothing warping and try-on stage. We propose a new semantic criteria with CLIP, and evaluate representative methods with uniformly implemented evaluation metrics on the same dataset. In addition to quantitative and qualitative evaluation of current open-source methods, we also utilize ControlNet to fine-tune a recent large image generation model (PBE) to show future potentials of large-scale models on image-based virtual try-on task. Finally, unresolved issues are revealed and future research directions are prospected to identify key trends and inspire further exploration. The uniformly implemented evaluation metrics, dataset and collected methods will be made public available at https://github.com/little-misfit/Survey-Of-Virtual-Try-On.
Abstract:Recent developments in text-conditioned image generative models have revolutionized the production of realistic results. Unfortunately, this has also led to an increase in privacy violations and the spread of false information, which requires the need for traceability, privacy protection, and other security measures. However, existing text-to-image paradigms lack the technical capabilities to link traceable messages with image generation. In this study, we introduce a novel task for the joint generation of text to image and watermark (T2IW). This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels. Additionally, by utilizing principles from Shannon information theory and non-cooperative game theory, we are able to separate the revealed image and the revealed watermark from the compound image. Furthermore, we strengthen the watermark robustness of our approach by subjecting the compound image to various post-processing attacks, with minimal pixel distortion observed in the revealed watermark. Extensive experiments have demonstrated remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
Abstract:Deep metric learning aims to learn an embedding space, where semantically similar samples are close together and dissimilar ones are repelled against. To explore more hard and informative training signals for augmentation and generalization, recent methods focus on generating synthetic samples to boost metric learning losses. However, these methods just use the deterministic and class-independent generations (e.g., simple linear interpolation), which only can cover the limited part of distribution spaces around original samples. They have overlooked the wide characteristic changes of different classes and can not model abundant intra-class variations for generations. Therefore, generated samples not only lack rich semantics within the certain class, but also might be noisy signals to disturb training. In this paper, we propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning. We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining and boost metric learning losses. Further, for most datasets that have a few samples within the class, we propose the neighbor correction to revise the inaccurate estimations, according to our correlation discovery where similar classes generally have similar variation distributions. Extensive experiments on five benchmarks show our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%. Our code is available at https://github.com/darkpromise98/IAA
Abstract:Temporal action localization plays an important role in video analysis, which aims to localize and classify actions in untrimmed videos. The previous methods often predict actions on a feature space of a single-temporal scale. However, the temporal features of a low-level scale lack enough semantics for action classification while a high-level scale cannot provide rich details of the action boundaries. To address this issue, we propose to predict actions on a feature space of multi-temporal scales. Specifically, we use refined feature pyramids of different scales to pass semantics from high-level scales to low-level scales. Besides, to establish the long temporal scale of the entire video, we use a spatial-temporal transformer encoder to capture the long-range dependencies of video frames. Then the refined features with long-range dependencies are fed into a classifier for the coarse action prediction. Finally, to further improve the prediction accuracy, we propose to use a frame-level self attention module to refine the classification and boundaries of each action instance. Extensive experiments show that the proposed method can outperform state-of-the-art approaches on the THUMOS14 dataset and achieves comparable performance on the ActivityNet1.3 dataset. Compared with A2Net (TIP20, Avg\{0.3:0.7\}), Sub-Action (CSVT2022, Avg\{0.1:0.5\}), and AFSD (CVPR21, Avg\{0.3:0.7\}) on the THUMOS14 dataset, the proposed method can achieve improvements of 12.6\%, 17.4\% and 2.2\%, respectively