Abstract:Auscultation of internal body sounds is essential for diagnosing a range of health conditions, yet its effectiveness is often limited by clinicians' expertise and the acoustic constraints of human hearing, restricting its use across various clinical scenarios. To address these challenges, we introduce AuscultaBase, a foundational framework aimed at advancing body sound diagnostics through innovative data integration and contrastive learning techniques. Our contributions include the following: First, we compile AuscultaBase-Corpus, a large-scale, multi-source body sound database encompassing 11 datasets with 40,317 audio recordings and totaling 322.4 hours of heart, lung, and bowel sounds. Second, we develop AuscultaBase-Model, a foundational diagnostic model for body sounds, utilizing contrastive learning on the compiled corpus. Third, we establish AuscultaBase-Bench, a comprehensive benchmark containing 16 sub-tasks, assessing the performance of various open-source acoustic pre-trained models. Evaluation results indicate that our model outperforms all other open-source models in 12 out of 16 tasks, demonstrating the efficacy of our approach in advancing diagnostic capabilities for body sound analysis.
Abstract:Semantic relevance metrics can capture both the inherent semantics of individual objects and their relationships to other elements within a visual scene. Numerous previous research has demonstrated that these metrics can influence human visual processing. However, these studies often did not fully account for contextual information or employ the recent deep learning models for more accurate computation. This study investigates human visual perception and processing by introducing the metrics of contextual semantic relevance. We evaluate semantic relationships between target objects and their surroundings from both vision-based and language-based perspectives. Testing a large eye-movement dataset from visual comprehension, we employ state-of-the-art deep learning techniques to compute these metrics and analyze their impacts on fixation measures on human visual processing through advanced statistical models. These metrics could also simulate top-down and bottom-up processing in visual perception. This study further integrates vision-based and language-based metrics into a novel combined metric, addressing a critical gap in previous research that often treated visual and semantic similarities separately. Results indicate that all metrics could precisely predict fixation measures in visual perception and processing, but with distinct roles in prediction. The combined metric outperforms other metrics, supporting theories that emphasize the interaction between semantic and visual information in shaping visual perception/processing. This finding aligns with growing recognition of the importance of multi-modal information processing in human cognition. These insights enhance our understanding of cognitive mechanisms underlying visual processing and have implications for developing more accurate computational models in fields such as cognitive science and human-computer interaction.
Abstract:Website Fingerprinting (WF) attacks can effectively identify the websites visited by Tor clients via analyzing encrypted traffic patterns. Existing attacks focus on identifying different websites, but their accuracy dramatically decreases when applied to identify fine-grained webpages, especially when distinguishing among different subpages of the same website. WebPage Fingerprinting (WPF) attacks face the challenges of highly similar traffic patterns and a much larger scale of webpages. Furthermore, clients often visit multiple webpages concurrently, increasing the difficulty of extracting the traffic patterns of each webpage from the obfuscated traffic. In this paper, we propose Oscar, a WPF attack based on multi-label metric learning that identifies different webpages from obfuscated traffic by transforming the feature space. Oscar can extract the subtle differences among various webpages, even those with similar traffic patterns. In particular, Oscar combines proxy-based and sample-based metric learning losses to extract webpage features from obfuscated traffic and identify multiple webpages. We prototype Oscar and evaluate its performance using traffic collected from 1,000 monitored webpages and over 9,000 unmonitored webpages in the real world. Oscar demonstrates an 88.6% improvement in the multi-label metric Recall@5 compared to the state-of-the-art attacks.
Abstract:Heart sound auscultation holds significant importance in the diagnosis of congenital heart disease. However, existing methods for Heart Sound Diagnosis (HSD) tasks are predominantly limited to a few fixed categories, framing the HSD task as a rigid classification problem that does not fully align with medical practice and offers only limited information to physicians. Besides, such methods do not utilize echocardiography reports, the gold standard in the diagnosis of related diseases. To tackle this challenge, we introduce HSDreport, a new benchmark for HSD, which mandates the direct utilization of heart sounds obtained from auscultation to predict echocardiography reports. This benchmark aims to merge the convenience of auscultation with the comprehensive nature of echocardiography reports. First, we collect a new dataset for this benchmark, comprising 2,275 heart sound samples along with their corresponding reports. Subsequently, we develop a knowledge-aware query-based transformer to handle this task. The intent is to leverage the capabilities of medically pre-trained models and the internal knowledge of large language models (LLMs) to address the task's inherent complexity and variability, thereby enhancing the robustness and scientific validity of the method. Furthermore, our experimental results indicate that our method significantly outperforms traditional HSD approaches and existing multimodal LLMs in detecting key abnormalities in heart sounds.
Abstract:Automated breast tumor segmentation on the basis of dynamic contrast-enhancement magnetic resonance imaging (DCE-MRI) has shown great promise in clinical practice, particularly for identifying the presence of breast disease. However, accurate segmentation of breast tumor is a challenging task, often necessitating the development of complex networks. To strike an optimal trade-off between computational costs and segmentation performance, we propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers. Specifically, the hybrid network consists of a encoder-decoder architecture by stacking convolution and decovolution layers. Effective 3D transformer layers are then implemented after the encoder subnetworks, to capture global dependencies between the bottleneck features. To improve the efficiency of hybrid network, two parallel encoder subnetworks are designed for the decoder and the transformer layers, respectively. To further enhance the discriminative capability of hybrid network, a prototype learning guided prediction module is proposed, where the category-specified prototypical features are calculated through on-line clustering. All learned prototypical features are finally combined with the features from decoder for tumor mask prediction. The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network achieves superior performance than the state-of-the-art (SOTA) methods, while maintaining balance between segmentation accuracy and computation cost. Moreover, we demonstrate that automatically generated tumor masks can be effectively applied to identify HER2-positive subtype from HER2-negative subtype with the similar accuracy to the analysis based on manual tumor segmentation. The source code is available at https://github.com/ZhouL-lab/PLHN.
Abstract:The high temporal variation of the point clouds is the key challenge of 3D single-object tracking (3D SOT). Existing approaches rely on the assumption that the shape variation of the point clouds and the motion of the objects across neighboring frames are smooth, failing to cope with high temporal variation data. In this paper, we present a novel framework for 3D SOT in point clouds with high temporal variation, called HVTrack. HVTrack proposes three novel components to tackle the challenges in the high temporal variation scenario: 1) A Relative-Pose-Aware Memory module to handle temporal point cloud shape variations; 2) a Base-Expansion Feature Cross-Attention module to deal with similar object distractions in expanded search areas; 3) a Contextual Point Guided Self-Attention module for suppressing heavy background noise. We construct a dataset with high temporal variation (KITTI-HV) by setting different frame intervals for sampling in the KITTI dataset. On the KITTI-HV with 5 frame intervals, our HVTrack surpasses the state-of-the-art tracker CXTracker by 11.3%/15.7% in Success/Precision.
Abstract:Online controlled experiments play a crucial role in enabling data-driven decisions across a wide range of companies. Variance reduction is an effective technique to improve the sensitivity of experiments, achieving higher statistical power while using fewer samples and shorter experimental periods. However, typical variance reduction methods (e.g., regression-adjusted estimators) are built upon the intuitional assumption of Gaussian distributions and cannot properly characterize the real business metrics with heavy-tailed distributions. Furthermore, outliers diminish the correlation between pre-experiment covariates and outcome metrics, greatly limiting the effectiveness of variance reduction. In this paper, we develop a novel framework that integrates the Student's t-distribution with machine learning tools to fit heavy-tailed metrics and construct a robust average treatment effect estimator in online controlled experiments, which we call STATE. By adopting a variational EM method to optimize the loglikehood function, we can infer a robust solution that greatly eliminates the negative impact of outliers and achieves significant variance reduction. Moreover, we extend the STATE method from count metrics to ratio metrics by utilizing linear transformation that preserves unbiased estimation, whose variance reduction is more complex but less investigated in existing works. Finally, both simulations on synthetic data and long-term empirical results on Meituan experiment platform demonstrate the effectiveness of our method. Compared with the state-of-the-art estimators (CUPAC/MLRATE), STATE achieves over 50% variance reduction, indicating it can reach the same statistical power with only half of the observations, or half the experimental duration.
Abstract:The development of different theories of discourse structure has led to the establishment of discourse corpora based on these theories. However, the existence of discourse corpora established on different theoretical bases creates challenges when it comes to exploring them in a consistent and cohesive way. This study has as its primary focus the conversion of PDTB annotations into dependency structures. It employs refined BERT-based discourse parsers to test the validity of the dependency data derived from the PDTB-style corpora in English, Chinese, and several other languages. By converting both PDTB and RST annotations for the same texts into dependencies, this study also applies ``dependency distance'' metrics to examine the correlation between RST dependencies and PDTB dependencies in English. The results show that the PDTB dependency data is valid and that there is a strong correlation between the two types of dependency distance. This study presents a comprehensive approach for analyzing and evaluating discourse corpora by employing discourse dependencies to achieve unified analysis. By applying dependency representations, we can extract data from PDTB, RST, and SDRT corpora in a coherent and unified manner. Moreover, the cross-linguistic validation establishes the framework's generalizability beyond English. The establishment of this comprehensive dependency framework overcomes limitations of existing discourse corpora, supporting a diverse range of algorithms and facilitating further studies in computational discourse analysis and language sciences.
Abstract:The traditional personality models only yield binary results. This paper presents a novel approach for training personality detection models that produce continuous output values, using mixed strategies. By leveraging the PANDORA dataset, which includes extensive personality labeling of Reddit comments, we developed models that predict the Big Five personality traits with high accuracy. Our approach involves fine-tuning a RoBERTa-base model with various strategies such as Multi-Layer Perceptron (MLP) integration, and hyperparameter tuning. The results demonstrate that our models significantly outperform traditional binary classification methods, offering precise continuous outputs for personality traits, thus enhancing applications in AI, psychology, human resources, marketing and health care fields.
Abstract:Machine Translation (MT) Quality Estimation (QE) assesses translation reliability without reference texts. This study introduces "textual similarity" as a new metric for QE, using sentence transformers and cosine similarity to measure semantic closeness. Analyzing data from the MLQE-PE dataset, we found that textual similarity exhibits stronger correlations with human scores than traditional metrics (hter, model evaluation etc.). Employing GAMMs as a statistical tool, we demonstrated that textual similarity consistently outperforms other metrics across multiple language pairs in predicting human scores. We also found that "hter" actually failed to predict human scores in QE. Our findings highlight the effectiveness of textual similarity as a robust QE metric, recommending its integration with other metrics into QE frameworks and MT system training for improved accuracy and usability.