Abstract:Medical information retrieval (MIR) is essential for retrieving relevant medical knowledge from diverse sources, including electronic health records, scientific literature, and medical databases. However, achieving effective zero-shot dense retrieval in the medical domain poses substantial challenges due to the lack of relevance-labeled data. In this paper, we introduce a novel approach called Self-Learning Hypothetical Document Embeddings (SL-HyDE) to tackle this issue. SL-HyDE leverages large language models (LLMs) as generators to generate hypothetical documents based on a given query. These generated documents encapsulate key medical context, guiding a dense retriever in identifying the most relevant documents. The self-learning framework progressively refines both pseudo-document generation and retrieval, utilizing unlabeled medical corpora without requiring any relevance-labeled data. Additionally, we present the Chinese Medical Information Retrieval Benchmark (CMIRB), a comprehensive evaluation framework grounded in real-world medical scenarios, encompassing five tasks and ten datasets. By benchmarking ten models on CMIRB, we establish a rigorous standard for evaluating medical information retrieval systems. Experimental results demonstrate that SL-HyDE significantly surpasses existing methods in retrieval accuracy while showcasing strong generalization and scalability across various LLM and retriever configurations. CMIRB data and evaluation code are publicly available at: https://github.com/CMIRB-benchmark/CMIRB.
Abstract:In recent years, vision-language models have made significant strides, excelling in tasks like optical character recognition and geometric problem-solving. However, several critical issues remain: 1) Proprietary models often lack transparency about their architectures, while open-source models need more detailed ablations of their training strategies. 2) Pre-training data in open-source works is under-explored, with datasets added empirically, making the process cumbersome. 3) Fine-tuning often focuses on adding datasets, leading to diminishing returns. To address these issues, we propose the following contributions: 1) We trained a robust baseline model using the latest advancements in vision-language models, introducing effective improvements and conducting comprehensive ablation and validation for each technique. 2) Inspired by recent work on large language models, we filtered pre-training data using perplexity, selecting the lowest perplexity data for training. This approach allowed us to train on a curated 1M dataset, achieving competitive performance. 3) During visual instruction tuning, we used model soup on different datasets when adding more datasets yielded marginal improvements. These innovations resulted in a 9B parameter model that performs competitively with state-of-the-art models. Our strategies are efficient and lightweight, making them easily adoptable by the community.
Abstract:Most large language models are fine-tuned using either expensive human-annotated data or GPT-4 generated data which cannot guarantee performance in certain domains. We argue that although the web-crawled data often has formatting errors causing semantic inaccuracies, it can still serve as a valuable source for high-quality supervised fine-tuning in specific domains without relying on advanced models like GPT-4. To this end, we create a paired training dataset automatically by aligning web-crawled data with a smaller set of high-quality data. By training a language model on this dataset, we can convert web data with irregular formats into high-quality ones. Our experiments show that training with the model-transformed data yields better results, surpassing training with only high-quality data by an average score of 9.4% in Chinese math problems. Additionally, our 7B model outperforms several open-source models larger than 32B and surpasses well-known closed-source models such as GPT-3.5, highlighting the efficacy of our approach.
Abstract:For autonomous driving in highly dynamic environments, it is anticipated to predict the future behaviors of surrounding vehicles (SVs) and make safe and effective decisions. However, modeling the inherent coupling effect between the prediction and decision-making modules has been a long-standing challenge, especially when there is a need to maintain appropriate computational efficiency. To tackle these problems, we propose a novel integrated intention prediction and decision-making approach, which explicitly models the coupling relationship and achieves efficient computation. Specifically, a spectrum attention net is designed to predict the intentions of SVs by capturing the trends of each frequency component over time and their interrelations. Fast computation of the intention prediction module is attained as the predicted intentions are not decoded to trajectories in the executing process. Furthermore, the proximal policy optimization (PPO) algorithm is employed to address the non-stationary problem in the framework through a modest policy update enabled by a clipping mechanism within its objective function. On the basis of these developments, the intention prediction and decision-making modules are integrated through joint learning. Experiments are conducted in representative traffic scenarios, and the results reveal that the proposed integrated framework demonstrates superior performance over several deep reinforcement learning (DRL) baselines in terms of success rate, efficiency, and safety in driving tasks.
Abstract:Current text-to-image diffusion models have achieved groundbreaking results in image generation tasks. However, the unavoidable inclusion of sensitive information during pre-training introduces significant risks such as copyright infringement and privacy violations in the generated images. Machine Unlearning (MU) provides a effective way to the sensitive concepts captured by the model, has been shown to be a promising approach to addressing these issues. Nonetheless, existing MU methods for concept erasure encounter two primary bottlenecks: 1) generalization issues, where concept erasure is effective only for the data within the unlearn set, and prompts outside the unlearn set often still result in the generation of sensitive concepts; and 2) utility drop, where erasing target concepts significantly degrades the model's performance. To this end, this paper first proposes a concept domain correction framework for unlearning concepts in diffusion models. By aligning the output domains of sensitive concepts and anchor concepts through adversarial training, we enhance the generalizability of the unlearning results. Secondly, we devise a concept-preserving scheme based on gradient surgery. This approach alleviates the parts of the unlearning gradient that contradict the relearning gradient, ensuring that the process of unlearning minimally disrupts the model's performance. Finally, extensive experiments validate the effectiveness of our model, demonstrating our method's capability to address the challenges of concept unlearning in diffusion models while preserving model utility.
Abstract:Recent advancements in large vision-language models (LVLMs), such as GPT4-V and LLaVA, have been substantial. LLaVA's modular architecture, in particular, offers a blend of simplicity and efficiency. Recent works mainly focus on introducing more pre-training and instruction tuning data to improve model's performance. This paper delves into the often-neglected aspects of data efficiency during pre-training and the selection process for instruction tuning datasets. Our research indicates that merely increasing the size of pre-training data does not guarantee improved performance and may, in fact, lead to its degradation. Furthermore, we have established a pipeline to pinpoint the most efficient instruction tuning (SFT) dataset, implying that not all SFT data utilized in existing studies are necessary. The primary objective of this paper is not to introduce a state-of-the-art model, but rather to serve as a roadmap for future research, aiming to optimize data usage during pre-training and fine-tuning processes to enhance the performance of vision-language models.
Abstract:In this paper, we consider the problem of visual representation learning for computational pathology, by exploiting large-scale image-text pairs gathered from public resources, along with the domain specific knowledge in pathology. Specifically, we make the following contributions: (i) We curate a pathology knowledge tree that consists of 50,470 informative attributes for 4,718 diseases requiring pathology diagnosis from 32 human tissues. To our knowledge, this is the first comprehensive structured pathology knowledge base; (ii) We develop a knowledge-enhanced visual-language pretraining approach, where we first project pathology-specific knowledge into latent embedding space via language model, and use it to guide the visual representation learning; (iii) We conduct thorough experiments to validate the effectiveness of our proposed components, demonstrating significant performance improvement on various downstream tasks, including cross-modal retrieval, zero-shot classification on pathology patches, and zero-shot tumor subtyping on whole slide images (WSIs). All codes, models and the pathology knowledge tree will be released to the research community
Abstract:In this work, we present a reward-driven automated curriculum reinforcement learning approach for interaction-aware self-driving at unsignalized intersections, taking into account the uncertainties associated with surrounding vehicles (SVs). These uncertainties encompass the uncertainty of SVs' driving intention and also the quantity of SVs. To deal with this problem, the curriculum set is specifically designed to accommodate a progressively increasing number of SVs. By implementing an automated curriculum selection mechanism, the importance weights are rationally allocated across various curricula, thereby facilitating improved sample efficiency and training outcomes. Furthermore, the reward function is meticulously designed to guide the agent towards effective policy exploration. Thus the proposed framework could proactively address the above uncertainties at unsignalized intersections by employing the automated curriculum learning technique that progressively increases task difficulty, and this ensures safe self-driving through effective interaction with SVs. Comparative experiments are conducted in $Highway\_Env$, and the results indicate that our approach achieves the highest task success rate, attains strong robustness to initialization parameters of the curriculum selection module, and exhibits superior adaptability to diverse situational configurations at unsignalized intersections. Furthermore, the effectiveness of the proposed method is validated using the high-fidelity CARLA simulator.
Abstract:Retrieval models aim at selecting a small set of item candidates which match the preference of a given user. They play a vital role in large-scale recommender systems since subsequent models such as rankers highly depend on the quality of item candidates. However, most existing retrieval models employ a single-round inference paradigm, which may not adequately capture the dynamic nature of user preferences and stuck in one area in the item space. In this paper, we propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems that iteratively refines user representations to better capture potential candidates in the full item space. Ada-Retrieval comprises two key modules: the item representation adapter and the user representation adapter, designed to inject context information into items' and users' representations. The framework maintains a model-agnostic design, allowing seamless integration with various backbone models such as RNNs or Transformers. We perform experiments on three widely used public datasets, incorporating five powerful sequential recommenders as backbone models. Our results demonstrate that Ada-Retrieval significantly enhances the performance of various base models, with consistent improvements observed across different datasets. Our code and data are publicly available at: https://github.com/ll0ruc/Ada-Retrieval.
Abstract:Driven by the large foundation models, the development of artificial intelligence has witnessed tremendous progress lately, leading to a surge of general interest from the public. In this study, we aim to assess the performance of OpenAI's newest model, GPT-4V(ision), specifically in the realm of multimodal medical diagnosis. Our evaluation encompasses 17 human body systems, including Central Nervous System, Head and Neck, Cardiac, Chest, Hematology, Hepatobiliary, Gastrointestinal, Urogenital, Gynecology, Obstetrics, Breast, Musculoskeletal, Spine, Vascular, Oncology, Trauma, Pediatrics, with images taken from 8 modalities used in daily clinic routine, e.g., X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Digital Subtraction Angiography (DSA), Mammography, Ultrasound, and Pathology. We probe the GPT-4V's ability on multiple clinical tasks with or without patent history provided, including imaging modality and anatomy recognition, disease diagnosis, report generation, disease localisation. Our observation shows that, while GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy, it faces significant challenges in disease diagnosis and generating comprehensive reports. These findings underscore that while large multimodal models have made significant advancements in computer vision and natural language processing, it remains far from being used to effectively support real-world medical applications and clinical decision-making. All images used in this report can be found in https://github.com/chaoyi-wu/GPT-4V_Medical_Evaluation.