Abstract:In real-world scenarios, most of the data obtained from information retrieval (IR) system is unstructured. Converting natural language sentences into structured Knowledge Graphs (KGs) remains a critical challenge. The quality of constructed KGs may also impact the performance of some KG-dependent domains like GraphRAG systems and recommendation systems. Recently, Large Language Models (LLMs) have demonstrated impressive capabilities in addressing a wide range of natural language processing tasks. However, there are still challenges when utilizing LLMs to address the task of generating structured KGs. And we have identified three limitations with respect to existing KG construction methods. (1)There is a large amount of information and excessive noise in real-world documents, which could result in extracting messy information. (2)Native LLMs struggle to effectively extract accuracy knowledge from some domain-specific documents. (3)Hallucinations phenomenon cannot be overlooked when utilizing LLMs directly as an unsupervised method for constructing KGs. In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges. We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement, respectively. We seek to utilize the capacity of LLMs to function as a graph judger, a capability superior to their role only as a predictor for KG construction problems. Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/GraphJudger.
Abstract:With the rapid development of Text-to-Image models, biases in human image generation against demographic groups social attract more and more concerns. Existing methods are designed based on certain models with fixed prompts, unable to accommodate the trend of high-speed updating of Text-to-Image (T2I) models and variable prompts in practical scenes. Additionally, they fail to consider the possibility of hallucinations, leading to deviations between expected and actual results. To address this issue, we introduce VersusDebias, a novel and universal debiasing framework for biases in T2I models, consisting of one generative adversarial mechanism (GAM) and one debiasing generation mechanism using a small language model (SLM). The self-adaptive GAM generates specialized attribute arrays for each prompts for diminishing the influence of hallucinations from T2I models. The SLM uses prompt engineering to generate debiased prompts for the T2I model, providing zero-shot debiasing ability and custom optimization for different models. Extensive experiments demonstrate VersusDebias's capability to rectify biases on arbitrary models across multiple protected attributes simultaneously, including gender, race, and age. Furthermore, VersusDebias outperforms existing methods in both zero-shot and few-shot situations, illustrating its extraordinary utility. Our work is openly accessible to the research community to ensure the reproducibility.
Abstract:Text-to-Image (T2I) generative models are becoming more crucial in terms of their ability to generate complex and high-quality images, which also raises concerns about the social biases in their outputs, especially in human generation. Sociological research has established systematic classifications of bias; however, existing research of T2I models often conflates different types of bias, hindering the progress of these methods. In this paper, we introduce BIGbench, a unified benchmark for Biases of Image Generation with a well-designed dataset. In contrast to existing benchmarks, BIGbench classifies and evaluates complex biases into four dimensions: manifestation of bias, visibility of bias, acquired attributes, and protected attributes. Additionally, BIGbench applies advanced multi-modal large language models (MLLM), achieving fully automated evaluation while maintaining high accuracy. We apply BIGbench to evaluate eight recent general T2I models and three debiased methods. We also conduct human evaluation, whose results demonstrated the effectiveness of BIGbench in aligning images and identifying various biases. Besides, our study also revealed new research directions about biases, including the side-effect of irrelevant protected attributes and distillation. Our dataset and benchmark is openly accessible to the research community to ensure the reproducibility.
Abstract:Given the escalating intricacy and multifaceted nature of contemporary social systems, manually generating solutions to address pertinent social issues has become a formidable task. In response to this challenge, the rapid development of artificial intelligence has spurred the exploration of computational methodologies aimed at automatically generating solutions. However, current methods for auto-generation of solutions mainly concentrate on local social regulations that pertain to specific scenarios. Here, we report an automatic social operating system (ASOS) designed for general social solution generation, which is built upon agent-based models, enabling both global and local analyses and regulations of social problems across spatial and temporal dimensions. ASOS adopts a hypergraph with extensible social semantics for a comprehensive and structured representation of social dynamics. It also incorporates a generalized protocol for standardized hypergraph operations and a symbolic hybrid framework that delivers interpretable solutions, yielding a balance between regulatory efficacy and function viability. To demonstrate the effectiveness of ASOS, we apply it to the domain of averting extreme events within international oil futures markets. By generating a new trading role supplemented by new mechanisms, ASOS can adeptly discern precarious market conditions and make front-running interventions for non-profit purposes. This study demonstrates that ASOS provides an efficient and systematic approach for generating solutions for enhancing our society.
Abstract:Most existing parametric query optimization (PQO) techniques rely on traditional query optimizer cost models, which are often inaccurate and result in suboptimal query performance. We propose Kepler, an end-to-end learning-based approach to PQO that demonstrates significant speedups in query latency over a traditional query optimizer. Central to our method is Row Count Evolution (RCE), a novel plan generation algorithm based on perturbations in the sub-plan cardinality space. While previous approaches require accurate cost models, we bypass this requirement by evaluating candidate plans via actual execution data and training an ML model to predict the fastest plan given parameter binding values. Our models leverage recent advances in neural network uncertainty in order to robustly predict faster plans while avoiding regressions in query performance. Experimentally, we show that Kepler achieves significant improvements in query runtime on multiple datasets on PostgreSQL.