Abstract:The rapid development of LLMs has sparked extensive research into their factual knowledge. Current works claim that LLMs fall short on questions requiring less frequent knowledge. However, their proof is incomplete since they only study the influence of entity frequency, which can not fully represent knowledge frequency. So we introduce ComparisonQA benchmark, containing 283K abstract questions, each instantiated by a pair of high-frequency and low-frequency entities. It ensures a controllable comparison because the difference of knowledge frequency between such a pair is only related to entity frequency. In addition, to avoid possible semantic shortcuts, which is a severe problem of current LLMs study, we design a two-round method for knowledge robustness measurement utilizing both correctness and uncertainty. Experiments reveal that LLMs exhibit particularly low robustness regarding low-frequency knowledge, and GPT-4o is even the worst under this measurement. Besides, we introduce an automatic method to filter out questions with low-quality and shortcuts to form ComparisonQA-Hard. We find that uncertainty effectively identifies such questions while maintaining the data size.
Abstract:Dialogical Argument Mining(DialAM) is an important branch of Argument Mining(AM). DialAM-2024 is a shared task focusing on dialogical argument mining, which requires us to identify argumentative relations and illocutionary relations among proposition nodes and locution nodes. To accomplish this, we propose a two-stage pipeline, which includes the Two-Step S-Node Prediction Model in Stage 1 and the YA-Node Prediction Model in Stage 2. We also augment the training data in both stages and introduce context in Stage 2. We successfully completed the task and achieved good results. Our team Pokemon ranked 1st in the ARI Focused score and 4th in the Global Focused score.
Abstract:Abstraction ability is crucial in human intelligence, which can also benefit various tasks in NLP study. Existing work shows that LLMs are deficient in abstract ability, and how to improve it remains unexplored. In this work, we design the framework AbsInstruct to enhance LLMs' abstraction ability through instruction tuning. The framework builds instructions with in-depth explanations to assist LLMs in capturing the underlying rationale of abstraction. Meanwhile, we introduce a plausibility estimator to select instructions that are more consistent with the abstraction knowledge of LLMs to be aligned. Then, our framework combines abstraction instructions with general-purpose ones to build a hybrid dataset. Extensive experiments and analyses demonstrate that our framework can considerably enhance LLMs' abstraction ability with strong generalization performance while maintaining their general instruction-following abilities.
Abstract:A main goal of Argument Mining (AM) is to analyze an author's stance. Unlike previous AM datasets focusing only on text, the shared task at the 10th Workshop on Argument Mining introduces a dataset including both text and images. Importantly, these images contain both visual elements and optical characters. Our new framework, TILFA (A Unified Framework for Text, Image, and Layout Fusion in Argument Mining), is designed to handle this mixed data. It excels at not only understanding text but also detecting optical characters and recognizing layout details in images. Our model significantly outperforms existing baselines, earning our team, KnowComp, the 1st place in the leaderboard of Argumentative Stance Classification subtask in this shared task.