Abstract:The rapid development of large language and multimodal models has sparked significant interest in using proprietary models, such as GPT-4o, to develop autonomous agents capable of handling real-world scenarios like web navigation. Although recent open-source efforts have tried to equip agents with the ability to explore environments and continuously improve over time, they are building text-only agents in synthetic environments where the reward signals are clearly defined. Such agents struggle to generalize to realistic settings that require multimodal perception abilities and lack ground-truth signals. In this paper, we introduce an open-source framework designed to facilitate the development of multimodal web agent that can autonomously conduct real-world exploration and improve itself. We first train the base model with imitation learning to gain the basic abilities. We then let the agent explore the open web and collect feedback on its trajectories. After that, it further improves its policy by learning from well-performing trajectories judged by another general-purpose model. This exploration-feedback-optimization cycle can continue for several iterations. Experimental results show that our web agent successfully improves itself after each iteration, demonstrating strong performance across multiple test sets.
Abstract:While Large Language Models (LLMs) have showcased remarkable proficiency in reasoning, there is still a concern about hallucinations and unreliable reasoning issues due to semantic associations and superficial logical chains. To evaluate the extent to which LLMs perform robust reasoning instead of relying on superficial logical chains, we propose a new evaluation dataset, the Concept-Reversed Winograd Schema Challenge (CR-WSC), based on the famous Winograd Schema Challenge (WSC) dataset. By simply reversing the concepts to those that are more associated with the wrong answer, we find that the performance of LLMs drops significantly despite the rationale of reasoning remaining the same. Furthermore, we propose Abstraction-of-Thought (AoT), a novel prompt method for recovering adversarial cases to normal cases using conceptual abstraction to improve LLMs' robustness and consistency in reasoning, as demonstrated by experiments on CR-WSC.
Abstract:Object navigation in unknown environments is crucial for deploying embodied agents in real-world applications. While we have witnessed huge progress due to large-scale scene datasets, faster simulators, and stronger models, previous studies mainly focus on limited scene types and target objects. In this paper, we study a new task of navigating to diverse target objects in a large number of scene types. To benchmark the problem, we present a large-scale scene dataset, DivScene, which contains 4,614 scenes across 81 different types. With the dataset, we build an end-to-end embodied agent, NatVLM, by fine-tuning a Large Vision Language Model (LVLM) through imitation learning. The LVLM is trained to take previous observations from the environment and generate the next actions. We also introduce CoT explanation traces of the action prediction for better performance when tuning LVLMs. Our extensive experiments find that we can build a performant LVLM-based agent through imitation learning on the shortest paths constructed by a BFS planner without any human supervision. Our agent achieves a success rate that surpasses GPT-4o by over 20%. Meanwhile, we carry out various analyses showing the generalization ability of our agent.
Abstract:Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose \OurMethod, a MLLM designed specifically for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of the input images. Experiments across a wide range of benchmarks demonstrate our model's superior capabilities in text-rich, multi-image evaluations and competitive performance in general domain evaluations.
Abstract:While large language models (LLMs) have demonstrated impressive capabilities across various natural language processing tasks by acquiring rich factual knowledge from their broad training data, their ability to synthesize and logically reason with this knowledge in complex ways remains underexplored. In this work, we present a systematic evaluation of state-of-the-art LLMs' complex logical reasoning abilities through a novel benchmark of automatically generated complex reasoning questions over general domain and biomedical knowledge graphs. Our extensive experiments, employing diverse in-context learning techniques, reveal that LLMs excel at reasoning over general world knowledge but face significant challenges with specialized domain-specific knowledge. We find that prompting with explicit Chain-of-Thought demonstrations can substantially improve LLM performance on complex logical reasoning tasks with diverse logical operations. Interestingly, our controlled evaluations uncover an asymmetry where LLMs display proficiency at set union operations, but struggle considerably with set intersections - a key building block of logical reasoning. To foster further work, we will publicly release our evaluation benchmark and code.
Abstract:Entity- and event-level conceptualization, as fundamental elements of human cognition, plays a pivotal role in generalizable reasoning. This process involves abstracting specific instances into higher-level concepts and forming abstract knowledge that can be applied in unfamiliar or novel situations, which can enhance models' inferential capabilities and support the effective transfer of knowledge across various domains. Despite its significance, there is currently a lack of a systematic overview that comprehensively examines existing works in the definition, execution, and application of conceptualization to enhance reasoning tasks. In this paper, we address this gap by presenting the first comprehensive survey of 150+ papers, categorizing various definitions, resources, methods, and downstream applications related to conceptualization into a unified taxonomy, with a focus on the entity and event levels. Furthermore, we shed light on potential future directions in this field and hope to garner more attention from the community.
Abstract:Improving user experience and providing personalized search results in E-commerce platforms heavily rely on understanding purchase intention. However, existing methods for acquiring large-scale intentions bank on distilling large language models with human annotation for verification. Such an approach tends to generate product-centric intentions, overlook valuable visual information from product images, and incurs high costs for scalability. To address these issues, we introduce MIND, a multimodal framework that allows Large Vision-Language Models (LVLMs) to infer purchase intentions from multimodal product metadata and prioritize human-centric ones. Using Amazon Review data, we apply MIND and create a multimodal intention knowledge base, which contains 1,264,441 million intentions derived from 126,142 co-buy shopping records across 107,215 products. Extensive human evaluations demonstrate the high plausibility and typicality of our obtained intentions and validate the effectiveness of our distillation framework and filtering mechanism. Additional experiments reveal that our obtained intentions significantly enhance large language models in two intention comprehension tasks.
Abstract:Enhancing Language Models' (LMs) ability to understand purchase intentions in E-commerce scenarios is crucial for their effective assistance in various downstream tasks. However, previous approaches that distill intentions from LMs often fail to generate meaningful and human-centric intentions applicable in real-world E-commerce contexts. This raises concerns about the true comprehension and utilization of purchase intentions by LMs. In this paper, we present IntentionQA, a double-task multiple-choice question answering benchmark to evaluate LMs' comprehension of purchase intentions in E-commerce. Specifically, LMs are tasked to infer intentions based on purchased products and utilize them to predict additional purchases. IntentionQA consists of 4,360 carefully curated problems across three difficulty levels, constructed using an automated pipeline to ensure scalability on large E-commerce platforms. Human evaluations demonstrate the high quality and low false-negative rate of our benchmark. Extensive experiments across 19 language models show that they still struggle with certain scenarios, such as understanding products and intentions accurately, jointly reasoning with products and intentions, and more, in which they fall far behind human performances. Our code and data are publicly available at https://github.com/HKUST-KnowComp/IntentionQA.
Abstract:Integrating and processing information from various sources or modalities are critical for obtaining a comprehensive and accurate perception of the real world in autonomous systems and cyber-physical systems. Drawing inspiration from neuroscience, we develop the Information-Theoretic Hierarchical Perception (ITHP) model, which utilizes the concept of information bottleneck. Different from most traditional fusion models that incorporate all modalities identically in neural networks, our model designates a prime modality and regards the remaining modalities as detectors in the information pathway, serving to distill the flow of information. Our proposed perception model focuses on constructing an effective and compact information flow by achieving a balance between the minimization of mutual information between the latent state and the input modal state, and the maximization of mutual information between the latent states and the remaining modal states. This approach leads to compact latent state representations that retain relevant information while minimizing redundancy, thereby substantially enhancing the performance of multimodal representation learning. Experimental evaluations on the MUStARD, CMU-MOSI, and CMU-MOSEI datasets demonstrate that our model consistently distills crucial information in multimodal learning scenarios, outperforming state-of-the-art benchmarks. Remarkably, on the CMU-MOSI dataset, ITHP surpasses human-level performance in the multimodal sentiment binary classification task across all evaluation metrics (i.e., Binary Accuracy, F1 Score, Mean Absolute Error, and Pearson Correlation).
Abstract:Event commonsense reasoning requires the ability to reason about the relationship between events, as well as infer implicit context underlying that relationship. However, data scarcity makes it challenging for language models to learn to generate commonsense inferences for contexts and questions involving interactions between complex events. To address this demand, we present COM2 (COMplex COMmonsense), a new dataset created by sampling multi-hop logical queries (e.g., the joint effect or cause of both event A and B, or the effect of the effect of event C) from an existing commonsense knowledge graph (CSKG), and verbalizing them using handcrafted rules and large language models into multiple-choice and text generation questions. Our experiments show that language models trained on COM2 exhibit significant improvements in complex reasoning ability, resulting in enhanced zero-shot performance in both in-domain and out-of-domain tasks for question answering and generative commonsense reasoning, without expensive human annotations.