Abstract:Textual graphs are ubiquitous in real-world applications, featuring rich text information with complex relationships, which enables advanced research across various fields. Textual graph representation learning aims to generate low-dimensional feature embeddings from textual graphs that can improve the performance of downstream tasks. A high-quality feature embedding should effectively capture both the structural and the textual information in a textual graph. However, most textual graph dataset benchmarks rely on word2vec techniques to generate feature embeddings, which inherently limits their capabilities. Recent works on textual graph representation learning can be categorized into two folds: supervised and unsupervised methods. Supervised methods finetune a language model on labeled nodes, which have limited capabilities when labeled data is scarce. Unsupervised methods, on the other hand, extract feature embeddings by developing complex training pipelines. To address these limitations, we propose a novel unified unsupervised learning autoencoder framework, named Node Level Graph AutoEncoder (NodeGAE). We employ language models as the backbone of the autoencoder, with pretraining on text reconstruction. Additionally, we add an auxiliary loss term to make the feature embeddings aware of the local graph structure. Our method maintains simplicity in the training process and demonstrates generalizability across diverse textual graphs and downstream tasks. We evaluate our method on two core graph representation learning downstream tasks: node classification and link prediction. Comprehensive experiments demonstrate that our approach substantially enhances the performance of diverse graph neural networks (GNNs) across multiple textual graph datasets.
Abstract:Improving user experience and providing personalized search results in E-commerce platforms heavily rely on understanding purchase intention. However, existing methods for acquiring large-scale intentions bank on distilling large language models with human annotation for verification. Such an approach tends to generate product-centric intentions, overlook valuable visual information from product images, and incurs high costs for scalability. To address these issues, we introduce MIND, a multimodal framework that allows Large Vision-Language Models (LVLMs) to infer purchase intentions from multimodal product metadata and prioritize human-centric ones. Using Amazon Review data, we apply MIND and create a multimodal intention knowledge base, which contains 1,264,441 million intentions derived from 126,142 co-buy shopping records across 107,215 products. Extensive human evaluations demonstrate the high plausibility and typicality of our obtained intentions and validate the effectiveness of our distillation framework and filtering mechanism. Additional experiments reveal that our obtained intentions significantly enhance large language models in two intention comprehension tasks.