Abstract:Although recent advancements in end-to-end learning-based link prediction (LP) methods have shown remarkable capabilities, the significance of traditional similarity-based LP methods persists in unsupervised scenarios where there are no known link labels. However, the selection of node features for similarity computation in similarity-based LP can be challenging. Less informative node features can result in suboptimal LP performance. To address these challenges, we integrate self-supervised graph learning techniques into similarity-based LP and propose a novel method: Self-Supervised Similarity-based LP (3SLP). 3SLP is suitable for the unsupervised condition of similarity-based LP without the assistance of known link labels. Specifically, 3SLP introduces a dual-view contrastive node representation learning (DCNRL) with crafted data augmentation and node representation learning. DCNRL is dedicated to developing more informative node representations, replacing the node attributes as inputs in the similarity-based LP backbone. Extensive experiments over benchmark datasets demonstrate the salient improvement of 3SLP, outperforming the baseline of traditional similarity-based LP by up to 21.2% (AUC).
Abstract:Knowledge Editing (KE) aims to correct and update factual information in Large Language Models (LLMs) to ensure accuracy and relevance without computationally expensive fine-tuning. Though it has been proven effective in several domains, limited work has focused on its application within the e-commerce sector. However, there are naturally occurring scenarios that make KE necessary in this domain, such as the timely updating of product features and trending purchase intentions by customers, which necessitate further exploration. In this paper, we pioneer the application of KE in the e-commerce domain by presenting ECOMEDIT, an automated e-commerce knowledge editing framework tailored for e-commerce-related knowledge and tasks. Our framework leverages more powerful LLMs as judges to enable automatic knowledge conflict detection and incorporates conceptualization to enhance the semantic coverage of the knowledge to be edited. Through extensive experiments, we demonstrate the effectiveness of ECOMEDIT in improving LLMs' understanding of product descriptions and purchase intentions. We also show that LLMs, after our editing, can achieve stronger performance on downstream e-commerce tasks.
Abstract:Privacy issues arise prominently during the inappropriate transmission of information between entities. Existing research primarily studies privacy by exploring various privacy attacks, defenses, and evaluations within narrowly predefined patterns, while neglecting that privacy is not an isolated, context-free concept limited to traditionally sensitive data (e.g., social security numbers), but intertwined with intricate social contexts that complicate the identification and analysis of potential privacy violations. The advent of Large Language Models (LLMs) offers unprecedented opportunities for incorporating the nuanced scenarios outlined in privacy laws to tackle these complex privacy issues. However, the scarcity of open-source relevant case studies restricts the efficiency of LLMs in aligning with specific legal statutes. To address this challenge, we introduce a novel framework, GoldCoin, designed to efficiently ground LLMs in privacy laws for judicial assessing privacy violations. Our framework leverages the theory of contextual integrity as a bridge, creating numerous synthetic scenarios grounded in relevant privacy statutes (e.g., HIPAA), to assist LLMs in comprehending the complex contexts for identifying privacy risks in the real world. Extensive experimental results demonstrate that GoldCoin markedly enhances LLMs' capabilities in recognizing privacy risks across real court cases, surpassing the baselines on different judicial tasks.
Abstract:Entity- and event-level conceptualization, as fundamental elements of human cognition, plays a pivotal role in generalizable reasoning. This process involves abstracting specific instances into higher-level concepts and forming abstract knowledge that can be applied in unfamiliar or novel situations, which can enhance models' inferential capabilities and support the effective transfer of knowledge across various domains. Despite its significance, there is currently a lack of a systematic overview that comprehensively examines existing works in the definition, execution, and application of conceptualization to enhance reasoning tasks. In this paper, we address this gap by presenting the first comprehensive survey of 150+ papers, categorizing various definitions, resources, methods, and downstream applications related to conceptualization into a unified taxonomy, with a focus on the entity and event levels. Furthermore, we shed light on potential future directions in this field and hope to garner more attention from the community.
Abstract:Improving user experience and providing personalized search results in E-commerce platforms heavily rely on understanding purchase intention. However, existing methods for acquiring large-scale intentions bank on distilling large language models with human annotation for verification. Such an approach tends to generate product-centric intentions, overlook valuable visual information from product images, and incurs high costs for scalability. To address these issues, we introduce MIND, a multimodal framework that allows Large Vision-Language Models (LVLMs) to infer purchase intentions from multimodal product metadata and prioritize human-centric ones. Using Amazon Review data, we apply MIND and create a multimodal intention knowledge base, which contains 1,264,441 million intentions derived from 126,142 co-buy shopping records across 107,215 products. Extensive human evaluations demonstrate the high plausibility and typicality of our obtained intentions and validate the effectiveness of our distillation framework and filtering mechanism. Additional experiments reveal that our obtained intentions significantly enhance large language models in two intention comprehension tasks.
Abstract:Enhancing Language Models' (LMs) ability to understand purchase intentions in E-commerce scenarios is crucial for their effective assistance in various downstream tasks. However, previous approaches that distill intentions from LMs often fail to generate meaningful and human-centric intentions applicable in real-world E-commerce contexts. This raises concerns about the true comprehension and utilization of purchase intentions by LMs. In this paper, we present IntentionQA, a double-task multiple-choice question answering benchmark to evaluate LMs' comprehension of purchase intentions in E-commerce. Specifically, LMs are tasked to infer intentions based on purchased products and utilize them to predict additional purchases. IntentionQA consists of 4,360 carefully curated problems across three difficulty levels, constructed using an automated pipeline to ensure scalability on large E-commerce platforms. Human evaluations demonstrate the high quality and low false-negative rate of our benchmark. Extensive experiments across 19 language models show that they still struggle with certain scenarios, such as understanding products and intentions accurately, jointly reasoning with products and intentions, and more, in which they fall far behind human performances. Our code and data are publicly available at https://github.com/HKUST-KnowComp/IntentionQA.
Abstract:To enable Large Language Models (LLMs) to function as conscious agents with generalizable reasoning capabilities, it is crucial that they possess the reasoning ability to comprehend situational changes (transitions) in distribution triggered by environmental factors or actions from other agents. Despite its fundamental significance, this ability remains underexplored due to the complexity of modeling infinite possible changes in an event and their associated distributions, coupled with the lack of benchmark data with situational transitions. Addressing these gaps, we propose a novel formulation of reasoning with distributional changes as a three-step discriminative process, termed as MetAphysical ReaSoning. We then introduce the first-ever benchmark, MARS, comprising three tasks corresponding to each step. These tasks systematically assess LLMs' capabilities in reasoning the plausibility of (i) changes in actions, (ii) states caused by changed actions, and (iii) situational transitions driven by changes in action. Extensive evaluations with 20 (L)LMs of varying sizes and methods indicate that all three tasks in this process pose significant challenges, even for state-of-the-art LLMs and LMs after fine-tuning. Further analyses reveal potential causes for the underperformance of LLMs and demonstrate that pre-training them on large-scale conceptualization taxonomies can potentially enhance their metaphysical reasoning capabilities. Our data and models are publicly accessible at https://github.com/HKUST-KnowComp/MARS.
Abstract:On the forefront of scientific computing, Deep Learning (DL), i.e., machine learning with Deep Neural Networks (DNNs), has emerged a powerful new tool for solving Partial Differential Equations (PDEs). It has been observed that DNNs are particularly well suited to weakening the effect of the curse of dimensionality, a term coined by Richard E. Bellman in the late `50s to describe challenges such as the exponential dependence of the sample complexity, i.e., the number of samples required to solve an approximation problem, on the dimension of the ambient space. However, although DNNs have been used to solve PDEs since the `90s, the literature underpinning their mathematical efficiency in terms of numerical analysis (i.e., stability, accuracy, and sample complexity), is only recently beginning to emerge. In this paper, we leverage recent advancements in function approximation using sparsity-based techniques and random sampling to develop and analyze an efficient high-dimensional PDE solver based on DL. We show, both theoretically and numerically, that it can compete with a novel stable and accurate compressive spectral collocation method. In particular, we demonstrate a new practical existence theorem, which establishes the existence of a class of trainable DNNs with suitable bounds on the network architecture and a sufficient condition on the sample complexity, with logarithmic or, at worst, linear scaling in dimension, such that the resulting networks stably and accurately approximate a diffusion-reaction PDE with high probability.
Abstract:As the right to be forgotten has been legislated worldwide, many studies attempt to design unlearning mechanisms to protect users' privacy when they want to leave machine learning service platforms. Specifically, machine unlearning is to make a trained model to remove the contribution of an erased subset of the training dataset. This survey aims to systematically classify a wide range of machine unlearning and discuss their differences, connections and open problems. We categorize current unlearning methods into four scenarios: centralized unlearning, distributed and irregular data unlearning, unlearning verification, and privacy and security issues in unlearning. Since centralized unlearning is the primary domain, we use two parts to introduce: firstly, we classify centralized unlearning into exact unlearning and approximate unlearning; secondly, we offer a detailed introduction to the techniques of these methods. Besides the centralized unlearning, we notice some studies about distributed and irregular data unlearning and introduce federated unlearning and graph unlearning as the two representative directions. After introducing unlearning methods, we review studies about unlearning verification. Moreover, we consider the privacy and security issues essential in machine unlearning and organize the latest related literature. Finally, we discuss the challenges of various unlearning scenarios and address the potential research directions.
Abstract:Subgraph isomorphism counting is known as #P-complete and requires exponential time to find the accurate solution. Utilizing representation learning has been shown as a promising direction to represent substructures and approximate the solution. Graph kernels that implicitly capture the correlations among substructures in diverse graphs have exhibited great discriminative power in graph classification, so we pioneeringly investigate their potential in counting subgraph isomorphisms and further explore the augmentation of kernel capability through various variants, including polynomial and Gaussian kernels. Through comprehensive analysis, we enhance the graph kernels by incorporating neighborhood information. Finally, we present the results of extensive experiments to demonstrate the effectiveness of the enhanced graph kernels and discuss promising directions for future research.