Johns Hopkins University
Abstract:Literature review tables are essential for summarizing and comparing collections of scientific papers. We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers. Building on recent work (Newman et al., 2024), we extend prior approaches to address real-world complexities through a combination of LLM-based methods and human annotations. Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques and instead assess the utility of inferred tables for information-seeking tasks (e.g., comparing papers). To support reproducible evaluation, we introduce ARXIV2TABLE, a more realistic and challenging benchmark for this task, along with a novel approach to improve literature review table generation in real-world scenarios. Our extensive experiments on this benchmark show that both open-weight and proprietary LLMs struggle with the task, highlighting its difficulty and the need for further advancements. Our dataset and code are available at https://github.com/JHU-CLSP/arXiv2Table.
Abstract:Training large, general-purpose language models poses significant challenges. The growing availability of specialized expert models, fine-tuned from pretrained models for specific tasks or domains, offers a promising alternative. Leveraging the potential of these existing expert models in real-world applications requires effective methods to select or merge the models best suited for a given task. This paper introduces SPECTR, an approach for dynamically composing expert models at each time step during inference. Notably, our method requires no additional training and enables flexible, token- and layer-wise model combinations. Our experimental results demonstrate that SPECTR improves routing accuracy over alternative training-free methods, increasing task performance across expert domains.
Abstract:To develop general-purpose collaborative agents, humans need reliable AI systems that can (1) adapt to new domains and (2) transparently reason with uncertainty to allow for verification and correction. Black-box models demonstrate powerful data processing abilities but do not satisfy these criteria due to their opaqueness, domain specificity, and lack of uncertainty awareness. We introduce Bonsai, a compositional and probabilistic reasoning system that generates adaptable inference trees by retrieving relevant grounding evidence and using it to compute likelihoods of sub-claims derived from broader natural language inferences. Bonsai's reasoning power is tunable at test-time via evidence scaling and it demonstrates reliable handling of varied domains including transcripts, photographs, videos, audio, and databases. Question-answering and human alignment experiments demonstrate that Bonsai matches the performance of domain-specific black-box methods while generating interpretable, grounded, and uncertainty-aware reasoning traces.
Abstract:We present the challenging task of automatically creating a high-level Wikipedia-style article that aggregates information from multiple diverse videos about real-world events, such as natural disasters or political elections. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text and existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.
Abstract:A core part of scientific peer review involves providing expert critiques that directly assess the scientific claims a paper makes. While it is now possible to automatically generate plausible (if generic) reviews, ensuring that these reviews are sound and grounded in the papers' claims remains challenging. To facilitate LLM benchmarking on these challenges, we introduce CLAIMCHECK, an annotated dataset of NeurIPS 2023 and 2024 submissions and reviews mined from OpenReview. CLAIMCHECK is richly annotated by ML experts for weakness statements in the reviews and the paper claims that they dispute, as well as fine-grained labels of the validity, objectivity, and type of the identified weaknesses. We benchmark several LLMs on three claim-centric tasks supported by CLAIMCHECK, requiring models to (1) associate weaknesses with the claims they dispute, (2) predict fine-grained labels for weaknesses and rewrite the weaknesses to enhance their specificity, and (3) verify a paper's claims with grounded reasoning. Our experiments reveal that cutting-edge LLMs, while capable of predicting weakness labels in (2), continue to underperform relative to human experts on all other tasks.
Abstract:In this work, we tackle the problem of text-to-video retrieval (T2VR). Inspired by the success of late interaction techniques in text-document, text-image, and text-video retrieval, our approach, Video-ColBERT, introduces a simple and efficient mechanism for fine-grained similarity assessment between queries and videos. Video-ColBERT is built upon 3 main components: a fine-grained spatial and temporal token-wise interaction, query and visual expansions, and a dual sigmoid loss during training. We find that this interaction and training paradigm leads to strong individual, yet compatible, representations for encoding video content. These representations lead to increases in performance on common text-to-video retrieval benchmarks compared to other bi-encoder methods.
Abstract:A key consideration when training an LLM is whether the target language is more or less resourced, whether this is English compared to Welsh, or Python compared to Excel. Typical training data for programming languages consist of real program demonstrations coupled with human-written comments. Here we present novel approaches to the creation of such data for low resource programming languages. We generate fully-synthetic, textbook-quality demonstrations of common library functions in an example domain of Excel formulas, using a teacher model. We then finetune an underperforming student model, and show improvement on 2 question-answering datasets recast into the Excel domain. We show advantages of finetuning over standard, off-the-shelf RAG approaches, which can offer only modest improvement due to the unfamiliar target domain.
Abstract:Sequence-to-sequence tasks often benefit from long contexts, but the quadratic complexity of self-attention in standard Transformers renders this non-trivial. During generation, temporary representations -stored in the so-called KV cache-account for a large portion of GPU memory usage and scale linearly with context length. We introduce KV-Distill, a Transformer compression framework that distills long context KV caches into significantly shorter representations in a question-independent fashion. KV-Distill can be trained as a parameter-efficient adaptor for pretrained models, and enables the compression of arbitrary spans of a context while preserving pre-trained model capabilities. We treat a compressed-uncompressed cache as a student-teacher pairing and apply a KL-type divergence to match the generated outputs. KV-Distill outperforms other compression techniques in worst-case extractive tasks and approaches uncompressed performance in long context question answering and summarization, and it can be fine-tuned on domain-specific contexts to reduce lengths by up to 99% while preserving downstream performance. We demonstrate the generalizability of KV-Distill across various model sizes and architectures.
Abstract:Language model outputs are not always reliable; this prompts research into methods for adapting model responses based on uncertainty. Common approaches include: \emph{abstention}, where models refrain from generating responses when uncertain; and \emph{linguistic calibration}, where models hedge their statements using uncertainty quantifiers. However, abstention can withhold valuable information, while linguistically calibrated responses are often challenging to leverage in downstream tasks. We propose a unifying view of both approaches, Conformal Linguistic Calibration (CLC), reinterpreting linguistic calibration as answer set prediction. We begin by presenting a unified framework that connects abstention and linguistic calibration through the lens of linguistic pragmatics. We then describe an implementation that allows for controlling the level of imprecision in model responses. Experimental results show that our method produces calibrated outputs with conformal guarantees on factual accuracy. Furthermore, our approach enables fine-tuning models to perform uncertainty-aware adaptive claim rewriting, offering a controllable balance between factuality and specificity.
Abstract:Generative retrieval employs sequence models for conditional generation of document IDs based on a query (DSI (Tay et al., 2022); NCI (Wang et al., 2022); inter alia). While this has led to improved performance in zero-shot retrieval, it is a challenge to support documents not seen during training. We identify the performance of generative retrieval lies in contrastive training between sibling nodes in a document hierarchy. This motivates our proposal, the hierarchical corpus encoder (HCE), which can be supported by traditional dense encoders. Our experiments show that HCE achieves superior results than generative retrieval models under both unsupervised zero-shot and supervised settings, while also allowing the easy addition and removal of documents to the index.