Abstract:Federated Learning (FL) is an innovative distributed machine learning paradigm that enables neural network training across devices without centralizing data. While this addresses issues of information sharing and data privacy, challenges arise from data heterogeneity across clients and increasing network scale, leading to impacts on model performance and training efficiency. Previous research shows that in IID environments, the parameter structure of the model is expected to adhere to certain specific consistency principles. Thus, identifying and regularizing these consistencies can mitigate issues from heterogeneous data. We found that both soft labels derived from knowledge distillation and the classifier head parameter matrix, when multiplied by their own transpose, capture the intrinsic relationships between data classes. These shared relationships suggest inherent consistency. Therefore, the work in this paper identifies the consistency between the two and leverages it to regulate training, underpinning our proposed FedDW framework. Experimental results show FedDW outperforms 10 state-of-the-art FL methods, improving accuracy by an average of 3% in highly heterogeneous settings. Additionally, we provide a theoretical proof that FedDW offers higher efficiency, with the additional computational load from backpropagation being negligible. The code is available at https://github.com/liuvvvvv1/FedDW.
Abstract:Measures of textual similarity and divergence are increasingly used to study cultural change. But which measures align, in practice, with social evidence about change? We apply three different representations of text (topic models, document embeddings, and word-level perplexity) to three different corpora (literary studies, economics, and fiction). In every case, works by highly-cited authors and younger authors are textually ahead of the curve. We don't find clear evidence that one representation of text is to be preferred over the others. But alignment with social evidence is strongest when texts are represented through the top quartile of passages, suggesting that a text's impact may depend more on its most forward-looking moments than on sustaining a high level of innovation throughout.
Abstract:Studying and building datasets for dialogue tasks is both expensive and time-consuming due to the need to recruit, train, and collect data from study participants. In response, much recent work has sought to use large language models (LLMs) to simulate both human-human and human-LLM interactions, as they have been shown to generate convincingly human-like text in many settings. However, to what extent do LLM-based simulations \textit{actually} reflect human dialogues? In this work, we answer this question by generating a large-scale dataset of 100,000 paired LLM-LLM and human-LLM dialogues from the WildChat dataset and quantifying how well the LLM simulations align with their human counterparts. Overall, we find relatively low alignment between simulations and human interactions, demonstrating a systematic divergence along the multiple textual properties, including style and content. Further, in comparisons of English, Chinese, and Russian dialogues, we find that models perform similarly. Our results suggest that LLMs generally perform better when the human themself writes in a way that is more similar to the LLM's own style.
Abstract:Anomaly detection is a long-standing challenge in manufacturing systems. Traditionally, anomaly detection has relied on human inspectors. However, 3D point clouds have gained attention due to their robustness to environmental factors and their ability to represent geometric data. Existing 3D anomaly detection methods generally fall into two categories. One compares scanned 3D point clouds with design files, assuming these files are always available. However, such assumptions are often violated in many real-world applications where model-free products exist, such as fresh produce (i.e., ``Cookie", ``Potato", etc.), dentures, bone, etc. The other category compares patches of scanned 3D point clouds with a library of normal patches named memory bank. However, those methods usually fail to detect incomplete shapes, which is a fairly common defect type (i.e., missing pieces of different products). The main challenge is that missing areas in 3D point clouds represent the absence of scanned points. This makes it infeasible to compare the missing region with existing point cloud patches in the memory bank. To address these two challenges, we proposed a unified, unsupervised 3D anomaly detection framework capable of identifying all types of defects on model-free products. Our method integrates two detection modules: a feature-based detection module and a reconstruction-based detection module. Feature-based detection covers geometric defects, such as dents, holes, and cracks, while the reconstruction-based method detects missing regions. Additionally, we employ a One-class Support Vector Machine (OCSVM) to fuse the detection results from both modules. The results demonstrate that (1) our proposed method outperforms the state-of-the-art methods in identifying incomplete shapes and (2) it still maintains comparable performance with the SOTA methods in detecting all other types of anomalies.
Abstract:Educational resource understanding is vital to online learning platforms, which have demonstrated growing applications recently. However, researchers and developers always struggle with using existing general natural language toolkits or domain-specific models. The issue raises a need to develop an effective and easy-to-use one that benefits AI education-related research and applications. To bridge this gap, we present a unified, modularized, and extensive library, EduNLP, focusing on educational resource understanding. In the library, we decouple the whole workflow to four key modules with consistent interfaces including data configuration, processing, model implementation, and model evaluation. We also provide a configurable pipeline to unify the data usage and model usage in standard ways, where users can customize their own needs. For the current version, we primarily provide 10 typical models from four categories, and 5 common downstream-evaluation tasks in the education domain on 8 subjects for users' usage. The project is released at: https://github.com/bigdata-ustc/EduNLP.
Abstract:Geometry Problem Solving (GPS), which is a classic and challenging math problem, has attracted much attention in recent years. It requires a solver to comprehensively understand both text and diagram, master essential geometry knowledge, and appropriately apply it in reasoning. However, existing works follow a paradigm of neural machine translation and only focus on enhancing the capability of encoders, which neglects the essential characteristics of human geometry reasoning. In this paper, inspired by dual-process theory, we propose a Dual-Reasoning Geometry Solver (DualGeoSolver) to simulate the dual-reasoning process of humans for GPS. Specifically, we construct two systems in DualGeoSolver, namely Knowledge System and Inference System. Knowledge System controls an implicit reasoning process, which is responsible for providing diagram information and geometry knowledge according to a step-wise reasoning goal generated by Inference System. Inference System conducts an explicit reasoning process, which specifies the goal in each reasoning step and applies the knowledge to generate program tokens for resolving it. The two systems carry out the above process iteratively, which behaves more in line with human cognition. We conduct extensive experiments on two benchmark datasets, GeoQA and GeoQA+. The results demonstrate the superiority of DualGeoSolver in both solving accuracy and robustness from explicitly modeling human reasoning process and knowledge application.
Abstract:Unsupervised semantic hashing has emerged as an indispensable technique for fast image search, which aims to convert images into binary hash codes without relying on labels. Recent advancements in the field demonstrate that employing large-scale backbones (e.g., ViT) in unsupervised semantic hashing models can yield substantial improvements. However, the inference delay has become increasingly difficult to overlook. Knowledge distillation provides a means for practical model compression to alleviate this delay. Nevertheless, the prevailing knowledge distillation approaches are not explicitly designed for semantic hashing. They ignore the unique search paradigm of semantic hashing, the inherent necessities of the distillation process, and the property of hash codes. In this paper, we propose an innovative Bit-mask Robust Contrastive knowledge Distillation (BRCD) method, specifically devised for the distillation of semantic hashing models. To ensure the effectiveness of two kinds of search paradigms in the context of semantic hashing, BRCD first aligns the semantic spaces between the teacher and student models through a contrastive knowledge distillation objective. Additionally, to eliminate noisy augmentations and ensure robust optimization, a cluster-based method within the knowledge distillation process is introduced. Furthermore, through a bit-level analysis, we uncover the presence of redundancy bits resulting from the bit independence property. To mitigate these effects, we introduce a bit mask mechanism in our knowledge distillation objective. Finally, extensive experiments not only showcase the noteworthy performance of our BRCD method in comparison to other knowledge distillation methods but also substantiate the generality of our methods across diverse semantic hashing models and backbones. The code for BRCD is available at https://github.com/hly1998/BRCD.
Abstract:Cognitive diagnosis aims to diagnose students' knowledge proficiencies based on their response scores on exam questions, which is the basis of many domains such as computerized adaptive testing. Existing cognitive diagnosis models (CDMs) follow a proficiency-response paradigm, which views diagnostic results as learnable embeddings that are the cause of students' responses and learns the diagnostic results through optimization. However, such a paradigm can easily lead to unidentifiable diagnostic results and the explainability overfitting problem, which is harmful to the quantification of students' learning performance. To address these problems, we propose a novel identifiable cognitive diagnosis framework. Specifically, we first propose a flexible diagnostic module which directly diagnose identifiable and explainable examinee traits and question features from response logs. Next, we leverage a general predictive module to reconstruct response logs from the diagnostic results to ensure the preciseness of the latter. We furthermore propose an implementation of the framework, i.e., ID-CDM, to demonstrate the availability of the former. Finally, we demonstrate the identifiability, explainability and preciseness of diagnostic results of ID-CDM through experiments on four public real-world datasets.
Abstract:Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portfolios, computed in a distribution-free (model-free) way and without using any numerical optimization, with desirable properties of hedge portfolios. More specifically, these long-short portfolios provide protection for both small and large market price fluctuations, due to their negative correlation with the market and positive convexity as a function of market returns. By adding our long-short portfolio to a baseline portfolio such as a traditional 60/40 portfolio, our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization. The total cost of such hedging amounts to the total cost of rebalancing the hedge portfolio.
Abstract:Mathematical reasoning is one of the crucial abilities of general artificial intelligence, which requires machines to master mathematical logic and knowledge from solving problems. However, existing approaches are not transparent (thus not interpretable) in terms of what knowledge has been learned and applied in the reasoning process. In this paper, we propose a general Learning by Applying (LeAp) framework to enhance existing models (backbones) in a principled way by explicit knowledge learning. In LeAp, we perform knowledge learning in a novel problem-knowledge-expression paradigm, with a Knowledge Encoder to acquire knowledge from problem data and a Knowledge Decoder to apply knowledge for expression reasoning. The learned mathematical knowledge, including word-word relations and word-operator relations, forms an explicit knowledge graph, which bridges the knowledge "learning" and "applying" organically. Moreover, for problem solving, we design a semantics-enhanced module and a reasoning-enhanced module that apply knowledge to improve the problem comprehension and symbol reasoning abilities of any backbone, respectively. We theoretically prove the superiority of LeAp's autonomous learning mechanism. Experiments on three real-world datasets show that LeAp improves all backbones' performances, learns accurate knowledge, and achieves a more interpretable reasoning process.