Abstract:While recent low-cost radar-camera approaches have shown promising results in multi-modal 3D object detection, both sensors face challenges from environmental and intrinsic disturbances. Poor lighting or adverse weather conditions degrade camera performance, while radar suffers from noise and positional ambiguity. Achieving robust radar-camera 3D object detection requires consistent performance across varying conditions, a topic that has not yet been fully explored. In this work, we first conduct a systematic analysis of robustness in radar-camera detection on five kinds of noises and propose RobuRCDet, a robust object detection model in BEV. Specifically, we design a 3D Gaussian Expansion (3DGE) module to mitigate inaccuracies in radar points, including position, Radar Cross-Section (RCS), and velocity. The 3DGE uses RCS and velocity priors to generate a deformable kernel map and variance for kernel size adjustment and value distribution. Additionally, we introduce a weather-adaptive fusion module, which adaptively fuses radar and camera features based on camera signal confidence. Extensive experiments on the popular benchmark, nuScenes, show that our model achieves competitive results in regular and noisy conditions.
Abstract:Adaptation to unpredictable damages is crucial for autonomous legged robots, yet existing methods based on multi-policy or meta-learning frameworks face challenges like limited generalization and complex maintenance. To address this issue, we first analyze and summarize eight types of damage scenarios, including sensor failures and joint malfunctions. Then, we propose a novel, model-free, two-stage training framework, Unified Malfunction Controller (UMC), incorporating a masking mechanism to enhance damage resilience. Specifically, the model is initially trained with normal environments to ensure robust performance under standard conditions. In the second stage, we use masks to prevent the legged robot from relying on malfunctioning limbs, enabling adaptive gait and movement adjustments upon malfunction. Experimental results demonstrate that our approach improves the task completion capability by an average of 36% for the transformer and 39% for the MLP across three locomotion tasks. The source code and trained models will be made available to the public.
Abstract:No-Reference Image Quality Assessment for distorted images has always been a challenging problem due to image content variance and distortion diversity. Previous IQA models mostly encode explicit single-quality features of synthetic images to obtain quality-aware representations for quality score prediction. However, performance decreases when facing real-world distortion and restored images from restoration models. The reason is that they do not consider the degradation factors of the low-quality images adequately. To address this issue, we first introduce the DRI method to obtain degradation vectors and quality vectors of images, which separately model the degradation and quality information of low-quality images. After that, we add the restoration network to provide the MOS score predictor with degradation information. Then, we design the Representation-based Semantic Loss (RS Loss) to assist in enhancing effective interaction between representations. Extensive experimental results demonstrate that the proposed method performs favorably against existing state-of-the-art models on both synthetic and real-world datasets.
Abstract:All-in-one image restoration aims to handle multiple degradation types using one model. This paper proposes a simple pipeline for all-in-one blind image restoration to Restore Anything with Masks (RAM). We focus on the image content by utilizing Mask Image Modeling to extract intrinsic image information rather than distinguishing degradation types like other methods. Our pipeline consists of two stages: masked image pre-training and fine-tuning with mask attribute conductance. We design a straightforward masking pre-training approach specifically tailored for all-in-one image restoration. This approach enhances networks to prioritize the extraction of image content priors from various degradations, resulting in a more balanced performance across different restoration tasks and achieving stronger overall results. To bridge the gap of input integrity while preserving learned image priors as much as possible, we selectively fine-tuned a small portion of the layers. Specifically, the importance of each layer is ranked by the proposed Mask Attribute Conductance (MAC), and the layers with higher contributions are selected for finetuning. Extensive experiments demonstrate that our method achieves state-of-the-art performance. Our code and model will be released at \href{https://github.com/Dragonisss/RAM}{https://github.com/Dragonisss/RAM}.
Abstract:Unsupervised restoration approaches based on generative adversarial networks (GANs) offer a promising solution without requiring paired datasets. Yet, these GAN-based approaches struggle to surpass the performance of conventional unsupervised GAN-based frameworks without significantly modifying model structures or increasing the computational complexity. To address these issues, we propose a self-collaboration (SC) strategy for existing restoration models. This strategy utilizes information from the previous stage as feedback to guide subsequent stages, achieving significant performance improvement without increasing the framework's inference complexity. The SC strategy comprises a prompt learning (PL) module and a restorer ($Res$). It iteratively replaces the previous less powerful fixed restorer $\overline{Res}$ in the PL module with a more powerful $Res$. The enhanced PL module generates better pseudo-degraded/clean image pairs, leading to a more powerful $Res$ for the next iteration. Our SC can significantly improve the $Res$'s performance by over 1.5 dB without adding extra parameters or computational complexity during inference. Meanwhile, existing self-ensemble (SE) and our SC strategies enhance the performance of pre-trained restorers from different perspectives. As SE increases computational complexity during inference, we propose a re-boosting module to the SC (Reb-SC) to improve the SC strategy further by incorporating SE into SC without increasing inference time. This approach further enhances the restorer's performance by approximately 0.3 dB. Extensive experimental results on restoration tasks demonstrate that the proposed model performs favorably against existing state-of-the-art unsupervised restoration methods. Source code and trained models are publicly available at: \url{https://github.com/linxin0/RSCP2GAN}.
Abstract:Educational resource understanding is vital to online learning platforms, which have demonstrated growing applications recently. However, researchers and developers always struggle with using existing general natural language toolkits or domain-specific models. The issue raises a need to develop an effective and easy-to-use one that benefits AI education-related research and applications. To bridge this gap, we present a unified, modularized, and extensive library, EduNLP, focusing on educational resource understanding. In the library, we decouple the whole workflow to four key modules with consistent interfaces including data configuration, processing, model implementation, and model evaluation. We also provide a configurable pipeline to unify the data usage and model usage in standard ways, where users can customize their own needs. For the current version, we primarily provide 10 typical models from four categories, and 5 common downstream-evaluation tasks in the education domain on 8 subjects for users' usage. The project is released at: https://github.com/bigdata-ustc/EduNLP.
Abstract:Math world problems correction(MWPC) is a novel task dedicated to rectifying reasoning errors in the process of solving mathematical problems. In this paper, leveraging the advancements in large language models (LLMs), we address two key objectives:(1) Distinguishing between mathematical reasoning and error correction; (2) Exploring strategies to enhance the error correction capabilities of LLMs in mathematics to solve MWPC task. We noticed that, in real-time education,assisting students in recognizing their mistakes is more crucial than simply providing correct answers. However, current research tends to prioritize obtaining accurate solutions to math problems rather than correcting potentially incorrect ones. Therefore, we modify the research paradigm, demonstrating that improving mathematical reasoning abilities does not equate to mastery in error correction. Meanwhile, we propose a novel method called diagnostic-oriented promping(DOP) aimed at facilitating LLMs to excel in error correction. In experiments, DOP has shown outstanding performance, highlighting its significant impact. We argue that in mathematical education, the demand for outstanding correctors surpasses that for proficient reasoners. Codes and data are available on https://github.com/ChenhaoEcnuCS/Reason-Correct.
Abstract:Large Language Models (LLMs) have exhibited remarkable performance across various downstream tasks, but they may generate inaccurate or false information with a confident tone. One of the possible solutions is to empower the LLM confidence expression capability, in which the confidence expressed can be well-aligned with the true probability of the generated answer being correct. However, leveraging the intrinsic ability of LLMs or the signals from the output logits of answers proves challenging in accurately capturing the response uncertainty in LLMs. Therefore, drawing inspiration from cognitive diagnostics, we propose a method of Learning from Past experience (LePe) to enhance the capability for confidence expression. Specifically, we first identify three key problems: (1) How to capture the inherent confidence of the LLM? (2) How to teach the LLM to express confidence? (3) How to evaluate the confidence expression of the LLM? Then we devise three stages in LePe to deal with these problems. Besides, to accurately capture the confidence of an LLM when constructing the training data, we design a complete pipeline including question preparation and answer sampling. We also conduct experiments using the Llama family of LLMs to verify the effectiveness of our proposed method on four datasets.
Abstract:This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (ie runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024_ESR/.
Abstract:Zero-shot navigation is a critical challenge in Vision-Language Navigation (VLN) tasks, where the ability to adapt to unfamiliar instructions and to act in unknown environments is essential. Existing supervised learning-based models, trained using annotated data through reinforcement learning, exhibit limitations in generalization capabilities. Large Language Models (LLMs), with their extensive knowledge and emergent reasoning abilities, present a potential pathway for achieving zero-shot navigation. This paper presents a VLN agent based on LLMs, exploring approaches to the zero-shot navigation problem. To compensate for the shortcomings of LLMs in environmental perception, we propose the Thinking, Interacting, and Action (TINA) framework. TINA enables the agent to scrutinize perceptual information and autonomously query key clues within the environment through an introduced question-answering module, thereby aligning instructions with specific perceptual data. The navigation agent's perceptual abilities are enhanced through the TINA framework, while the explicit thought and query processes also improve the navigational procedure's explainability and transparency. We evaluate the performance of our method on the Room-to-Room dataset. The experiment results indicate that our approach improves the navigation performance of LLM-based agents. Our approach also outperformed some supervised learning-based methods, highlighting its efficacy in zero-shot navigation.