Abstract:Camera-based 3D Semantic Occupancy Prediction (SOP) is crucial for understanding complex 3D scenes from limited 2D image observations. Existing SOP methods typically aggregate contextual features to assist the occupancy representation learning, alleviating issues like occlusion or ambiguity. However, these solutions often face misalignment issues wherein the corresponding features at the same position across different frames may have different semantic meanings during the aggregation process, which leads to unreliable contextual fusion results and an unstable representation learning process. To address this problem, we introduce a new Hierarchical context alignment paradigm for a more accurate SOP (Hi-SOP). Hi-SOP first disentangles the geometric and temporal context for separate alignment, which two branches are then composed to enhance the reliability of SOP. This parsing of the visual input into a local-global alignment hierarchy includes: (I) disentangled geometric and temporal separate alignment, within each leverages depth confidence and camera pose as prior for relevant feature matching respectively; (II) global alignment and composition of the transformed geometric and temporal volumes based on semantics consistency. Our method outperforms SOTAs for semantic scene completion on the SemanticKITTI & NuScenes-Occupancy datasets and LiDAR semantic segmentation on the NuScenes dataset.
Abstract:Generating high-fidelity, controllable, and annotated training data is critical for autonomous driving. Existing methods typically generate a single data form directly from a coarse scene layout, which not only fails to output rich data forms required for diverse downstream tasks but also struggles to model the direct layout-to-data distribution. In this paper, we introduce UniScene, the first unified framework for generating three key data forms - semantic occupancy, video, and LiDAR - in driving scenes. UniScene employs a progressive generation process that decomposes the complex task of scene generation into two hierarchical steps: (a) first generating semantic occupancy from a customized scene layout as a meta scene representation rich in both semantic and geometric information, and then (b) conditioned on occupancy, generating video and LiDAR data, respectively, with two novel transfer strategies of Gaussian-based Joint Rendering and Prior-guided Sparse Modeling. This occupancy-centric approach reduces the generation burden, especially for intricate scenes, while providing detailed intermediate representations for the subsequent generation stages. Extensive experiments demonstrate that UniScene outperforms previous SOTAs in the occupancy, video, and LiDAR generation, which also indeed benefits downstream driving tasks.
Abstract:Existing object detection methods often consider sRGB input, which was compressed from RAW data using ISP originally designed for visualization. However, such compression might lose crucial information for detection, especially under complex light and weather conditions. We introduce the AODRaw dataset, which offers 7,785 high-resolution real RAW images with 135,601 annotated instances spanning 62 categories, capturing a broad range of indoor and outdoor scenes under 9 distinct light and weather conditions. Based on AODRaw that supports RAW and sRGB object detection, we provide a comprehensive benchmark for evaluating current detection methods. We find that sRGB pre-training constrains the potential of RAW object detection due to the domain gap between sRGB and RAW, prompting us to directly pre-train on the RAW domain. However, it is harder for RAW pre-training to learn rich representations than sRGB pre-training due to the camera noise. To assist RAW pre-training, we distill the knowledge from an off-the-shelf model pre-trained on the sRGB domain. As a result, we achieve substantial improvements under diverse and adverse conditions without relying on extra pre-processing modules. Code and dataset are available at https://github.com/lzyhha/AODRaw.
Abstract:As one of the automotive sensors that have emerged in recent years, 4D millimeter-wave radar has a higher resolution than conventional 3D radar and provides precise elevation measurements. But its point clouds are still sparse and noisy, making it challenging to meet the requirements of autonomous driving. Camera, as another commonly used sensor, can capture rich semantic information. As a result, the fusion of 4D radar and camera can provide an affordable and robust perception solution for autonomous driving systems. However, previous radar-camera fusion methods have not yet been thoroughly investigated, resulting in a large performance gap compared to LiDAR-based methods. Specifically, they ignore the feature-blurring problem and do not deeply interact with image semantic information. To this end, we present a simple but effective multi-stage sampling fusion (MSSF) network based on 4D radar and camera. On the one hand, we design a fusion block that can deeply interact point cloud features with image features, and can be applied to commonly used single-modal backbones in a plug-and-play manner. The fusion block encompasses two types, namely, simple feature fusion (SFF) and multiscale deformable feature fusion (MSDFF). The SFF is easy to implement, while the MSDFF has stronger fusion abilities. On the other hand, we propose a semantic-guided head to perform foreground-background segmentation on voxels with voxel feature re-weighting, further alleviating the problem of feature blurring. Extensive experiments on the View-of-Delft (VoD) and TJ4DRadset datasets demonstrate the effectiveness of our MSSF. Notably, compared to state-of-the-art methods, MSSF achieves a 7.0% and 4.0% improvement in 3D mean average precision on the VoD and TJ4DRadSet datasets, respectively. It even surpasses classical LiDAR-based methods on the VoD dataset.
Abstract:Datasets play a pivotal role in training visual models, facilitating the development of abstract understandings of visual features through diverse image samples and multidimensional attributes. However, in the realm of aesthetic evaluation of artistic images, datasets remain relatively scarce. Existing painting datasets are often characterized by limited scoring dimensions and insufficient annotations, thereby constraining the advancement and application of automatic aesthetic evaluation methods in the domain of painting. To bridge this gap, we introduce the Aesthetics Paintings and Drawings Dataset (APDD), the first comprehensive collection of paintings encompassing 24 distinct artistic categories and 10 aesthetic attributes. Building upon the initial release of APDDv1, our ongoing research has identified opportunities for enhancement in data scale and annotation precision. Consequently, APDDv2 boasts an expanded image corpus and improved annotation quality, featuring detailed language comments to better cater to the needs of both researchers and practitioners seeking high-quality painting datasets. Furthermore, we present an updated version of the Art Assessment Network for Specific Painting Styles, denoted as ArtCLIP. Experimental validation demonstrates the superior performance of this revised model in the realm of aesthetic evaluation, surpassing its predecessor in accuracy and efficacy. The dataset and model are available at https://github.com/BestiVictory/APDDv2.git.
Abstract:Scattering imaging is often hindered by extremely low signal-to-noise ratios (SNRs) due to the prevalence of scattering noise. Light field imaging has been shown to be effective in suppressing noise and collect more ballistic photons as signals. However, to overcome the SNR limit in super-strong scattering environments, even with light field framework, only rare ballistic signals are insufficient. Inspired by radiative transfer theory, we propose a diffuse light field imaging model (DLIM) that leverages light field imaging to retrieve forward-scattered photons as signals to overcome the challenges of low-SNR imaging caused by super-strong scattering environments. This model aims to recover the ballistic photon signal as a source term from forward-scattered photons based on diffusion equations. The DLIM consists of two main processes: radiance modeling and diffusion light-field approximation. Radiate modeling analyzes the radiance distribution in scattering light field images using a proposed three-plane parameterization, which solves a 4-D radiate kernel describing the impulse function of scattering light field. Then, the scattering light field images synthesize a diffuse source satisfying the diffusion equation governing forward scattering photons, solved under Neumann boundary conditions in imaging space. This is the first physically-aware scattering light field imaging model, extending the conventional light field imaging framework from free space into diffuse space. The extensive experiments confirm that the DLIM can reconstruct the target objects even when scattering light field images are reduced as random noise at extremely low SNRs.
Abstract:In this paper, we tackle the problem of how to build and benchmark a large motion model (LMM). The ultimate goal of LMM is to serve as a foundation model for versatile motion-related tasks, e.g., human motion generation, with interpretability and generalizability. Though advanced, recent LMM-related works are still limited by small-scale motion data and costly text descriptions. Besides, previous motion benchmarks primarily focus on pure body movements, neglecting the ubiquitous motions in context, i.e., humans interacting with humans, objects, and scenes. To address these limitations, we consolidate large-scale video action datasets as knowledge banks to build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions. Different from laboratory-captured motions, in-the-wild human-centric videos contain abundant motions in context. To facilitate better motion text alignment, we also meticulously devise a motion caption generation algorithm to automatically produce rule-based, unbiased, and disentangled text descriptions via the kinematic characteristics for each motion. Extensive experiments show that our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding. Video motions together with the rule-based text annotations could serve as an efficient alternative for larger LMMs. Our dataset, codes, and benchmark will be publicly available at https://github.com/liangxuy/MotionBank.
Abstract:Since the development of photography art, many so-called "templates" have been formed, namely visual styles summarized from a series of themed and stylized photography works. In this paper, we propose to analysize and and summarize these 'templates' in photography by learning composite templates of photography images. We present a framework for learning a hierarchical reconfigurable image template from photography images to learn and characterize the "templates" used in these photography images. Using this method, we measured the artistic quality of photography on the photos and conducted photography guidance. In addition, we also utilized the "templates" for guidance in several image generation tasks. Experimental results show that the learned templates can well describe the photography techniques and styles, whereas the proposed approach can assess the quality of photography images as human being does.
Abstract:Training visual reinforcement learning agents in a high-dimensional open world presents significant challenges. While various model-based methods have improved sample efficiency by learning interactive world models, these agents tend to be "short-sighted", as they are typically trained on short snippets of imagined experiences. We argue that the primary obstacle in open-world decision-making is improving the efficiency of off-policy exploration across an extensive state space. In this paper, we present LS-Imagine, which extends the imagination horizon within a limited number of state transition steps, enabling the agent to explore behaviors that potentially lead to promising long-term feedback. The foundation of our approach is to build a long short-term world model. To achieve this, we simulate goal-conditioned jumpy state transitions and compute corresponding affordance maps by zooming in on specific areas within single images. This facilitates the integration of direct long-term values into behavior learning. Our method demonstrates significant improvements over state-of-the-art techniques in MineDojo.
Abstract:There has been exciting progress in generating images from natural language or layout conditions. However, these methods struggle to faithfully reproduce complex scenes due to the insufficient modeling of multiple objects and their relationships. To address this issue, we leverage the scene graph, a powerful structured representation, for complex image generation. Different from the previous works that directly use scene graphs for generation, we employ the generative capabilities of variational autoencoders and diffusion models in a generalizable manner, compositing diverse disentangled visual clues from scene graphs. Specifically, we first propose a Semantics-Layout Variational AutoEncoder (SL-VAE) to jointly derive (layouts, semantics) from the input scene graph, which allows a more diverse and reasonable generation in a one-to-many mapping. We then develop a Compositional Masked Attention (CMA) integrated with a diffusion model, incorporating (layouts, semantics) with fine-grained attributes as generation guidance. To further achieve graph manipulation while keeping the visual content consistent, we introduce a Multi-Layered Sampler (MLS) for an "isolated" image editing effect. Extensive experiments demonstrate that our method outperforms recent competitors based on text, layout, or scene graph, in terms of generation rationality and controllability.