Abstract:The optimisation of crop harvesting processes for commonly cultivated crops is of great importance in the aim of agricultural industrialisation. Nowadays, the utilisation of machine vision has enabled the automated identification of crops, leading to the enhancement of harvesting efficiency, but challenges still exist. This study presents a new framework that combines two separate architectures of convolutional neural networks (CNNs) in order to simultaneously accomplish the tasks of crop detection and harvesting (robotic manipulation) inside a simulated environment. Crop images in the simulated environment are subjected to random rotations, cropping, brightness, and contrast adjustments to create augmented images for dataset generation. The you only look once algorithmic framework is employed with traditional rectangular bounding boxes for crop localization. The proposed method subsequently utilises the acquired image data via a visual geometry group model in order to reveal the grasping positions for the robotic manipulation.
Abstract:This paper considers the distributed leader-follower stress-matrix-based affine formation control problem of discrete-time linear multi-agent systems with static and dynamic leaders. In leader-follower multi-agent formation control, the aim is to drive a set of agents comprising leaders and followers to form any desired geometric pattern and simultaneously execute any required manoeuvre by controlling only a few agents denoted as leaders. Existing works in literature are mostly limited to the cases where the agents' inter-agent communications are either in the continuous-time settings or the sampled-data cases where the leaders are constrained to constant (or zero) velocities or accelerations. Here, we relax these constraints and study the discrete-time cases where the leaders can have stationary or time-varying velocities. We propose control laws in the study of different situations and provide some sufficient conditions to guarantee the overall system stability. Simulation study is used to demonstrate the efficacy of our proposed control laws.