Abstract:The optimisation of crop harvesting processes for commonly cultivated crops is of great importance in the aim of agricultural industrialisation. Nowadays, the utilisation of machine vision has enabled the automated identification of crops, leading to the enhancement of harvesting efficiency, but challenges still exist. This study presents a new framework that combines two separate architectures of convolutional neural networks (CNNs) in order to simultaneously accomplish the tasks of crop detection and harvesting (robotic manipulation) inside a simulated environment. Crop images in the simulated environment are subjected to random rotations, cropping, brightness, and contrast adjustments to create augmented images for dataset generation. The you only look once algorithmic framework is employed with traditional rectangular bounding boxes for crop localization. The proposed method subsequently utilises the acquired image data via a visual geometry group model in order to reveal the grasping positions for the robotic manipulation.
Abstract:We developed a transparent computational large-scale imaging-based framework that can distinguish between normal and metastasizing human cells. The method relies on fluorescence microscopy images showing the spatial organization of actin and vimentin filaments in normal and metastasizing single cells, using a combination of multi-attention channels network and global explainable techniques. We test a classification between normal cells (Bj primary fibroblast), and their isogenically matched, transformed and invasive counterpart (BjTertSV40TRasV12). Manual annotation is not trivial to automate due to the intricacy of the biologically relevant features. In this research, we utilized established deep learning networks and our new multi-attention channel architecture. To increase the interpretability of the network - crucial for this application area - we developed an interpretable global explainable approach correlating the weighted geometric mean of the total cell images and their local GradCam scores. The significant results from our analysis unprecedently allowed a more detailed, and biologically relevant understanding of the cytoskeletal changes that accompany oncogenic transformation of normal to invasive and metastasizing cells. We also paved the way for a possible spatial micrometre-level biomarker for future development of diagnostic tools against metastasis (spatial distribution of vimentin).