Abstract:Recent works show that assembling multiple off-the-shelf large language models (LLMs) can harness their complementary abilities. To achieve this, routing is a promising method, which learns a router to select the most suitable LLM for each query. However, existing routing models are ineffective when multiple LLMs perform well for a query. To address this problem, in this paper, we propose a method called query-based Router by Dual Contrastive learning (RouterDC). The RouterDC model consists of an encoder and LLM embeddings, and we propose two contrastive learning losses to train the RouterDC model. Experimental results show that RouterDC is effective in assembling LLMs and largely outperforms individual top-performing LLMs as well as existing routing methods on both in-distribution (+2.76\%) and out-of-distribution (+1.90\%) tasks. Source code is available at https://github.com/shuhao02/RouterDC.
Abstract:GPT-4o, an omni-modal model that enables vocal conversations with diverse emotions and tones, marks a milestone for omni-modal foundation models. However, empowering Large Language Models to perceive and generate images, texts, and speeches end-to-end with publicly available data remains challenging in the open-source community. Existing vision-language models rely on external tools for the speech processing, while speech-language models still suffer from limited or even without vision-understanding abilities. To address this gap, we propose EMOVA (EMotionally Omni-present Voice Assistant), to enable Large Language Models with end-to-end speech capabilities while maintaining the leading vision-language performance. With a semantic-acoustic disentangled speech tokenizer, we notice surprisingly that omni-modal alignment can further enhance vision-language and speech abilities compared with the corresponding bi-modal aligned counterparts. Moreover, a lightweight style module is proposed for flexible speech style controls (e.g., emotions and pitches). For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks, and meanwhile, supporting omni-modal spoken dialogue with vivid emotions.
Abstract:Multi-task learning, which optimizes performance across multiple tasks, is inherently a multi-objective optimization problem. Various algorithms are developed to provide discrete trade-off solutions on the Pareto front. Recently, continuous Pareto front approximations using a linear combination of base networks have emerged as a compelling strategy. However, it suffers from scalability issues when the number of tasks is large. To address this issue, we propose a novel approach that integrates a main network with several low-rank matrices to efficiently learn the Pareto manifold. It significantly reduces the number of parameters and facilitates the extraction of shared features. We also introduce orthogonal regularization to further bolster performance. Extensive experimental results demonstrate that the proposed approach outperforms state-of-the-art baselines, especially on datasets with a large number of tasks.
Abstract:Pre-training followed by fine-tuning is widely adopted among practitioners. The performance can be improved by "model soups"~\cite{wortsman2022model} via exploring various hyperparameter configurations.The Learned-Soup, a variant of model soups, significantly improves the performance but suffers from substantial memory and time costs due to the requirements of (i) having to load all fine-tuned models simultaneously, and (ii) a large computational graph encompassing all fine-tuned models. In this paper, we propose Memory Efficient Hyperplane Learned Soup (MEHL-Soup) to tackle this issue by formulating the learned soup as a hyperplane optimization problem and introducing block coordinate gradient descent to learn the mixing coefficients. At each iteration, MEHL-Soup only needs to load a few fine-tuned models and build a computational graph with one combined model. We further extend MEHL-Soup to MEHL-Soup+ in a layer-wise manner. Experimental results on various ViT models and data sets show that MEHL-Soup(+) outperforms Learned-Soup(+) in terms of test accuracy, and also reduces memory usage by more than $13\times$. Moreover, MEHL-Soup(+) can be run on a single GPU and achieves $9\times$ speed up in soup construction compared with the Learned-Soup. The code is released at https://github.com/nblt/MEHL-Soup.
Abstract:Mixup and its variants form a popular class of data augmentation techniques.Using a random sample pair, it generates a new sample by linear interpolation of the inputs and labels. However, generating only one single interpolation may limit its augmentation ability. In this paper, we propose a simple yet effective extension called multi-mix, which generates multiple interpolations from a sample pair. With an ordered sequence of generated samples, multi-mix can better guide the training process than standard mixup. Moreover, theoretically, this can also reduce the stochastic gradient variance. Extensive experiments on a number of synthetic and large-scale data sets demonstrate that multi-mix outperforms various mixup variants and non-mixup-based baselines in terms of generalization, robustness, and calibration.
Abstract:Reinforcement Learning from Human Feedback (RLHF) has been commonly used to align the behaviors of Large Language Models (LLMs) with human preferences. Recently, a popular alternative is Direct Policy Optimization (DPO), which replaces an LLM-based reward model with the policy itself, thus obviating the need for extra memory and training time to learn the reward model. However, DPO does not consider the relative qualities of the positive and negative responses, and can lead to sub-optimal training outcomes. To alleviate this problem, we investigate the use of intrinsic knowledge within the on-the-fly fine-tuning LLM to obtain relative qualities and help to refine the loss function. Specifically, we leverage the knowledge of the LLM to design a refinement function to estimate the quality of both the positive and negative responses. We show that the constructed refinement function can help self-refine the loss function under mild assumptions. The refinement function is integrated into DPO and its variant Identity Policy Optimization (IPO). Experiments across various evaluators indicate that they can improve the performance of the fine-tuned models over DPO and IPO.
Abstract:As the capabilities of large language models (LLMs) have expanded dramatically, aligning these models with human values presents a significant challenge, posing potential risks during deployment. Traditional alignment strategies rely heavily on human intervention, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), or on the self-alignment capacities of LLMs, which usually require a strong LLM's emergent ability to improve its original bad answer. To address these challenges, we propose a novel self-alignment method that utilizes a Chain of Thought (CoT) approach, termed AlignCoT. This method encompasses stages of Question Analysis, Answer Guidance, and Safe Answer production. It is designed to enable LLMs to generate high-quality, safe responses throughout various stages of their development. Furthermore, we introduce the Mixture of insighTful Experts (MoTE) architecture, which applies the mixture of experts to enhance each component of the AlignCoT process, markedly increasing alignment efficiency. The MoTE approach not only outperforms existing methods in aligning LLMs with human values but also highlights the benefits of using self-generated data, revealing the dual benefits of improved alignment and training efficiency.
Abstract:Multimodal large language models (MLLMs) have shown impressive reasoning abilities, which, however, are also more vulnerable to jailbreak attacks than their LLM predecessors. Although still capable of detecting unsafe responses, we observe that safety mechanisms of the pre-aligned LLMs in MLLMs can be easily bypassed due to the introduction of image features. To construct robust MLLMs, we propose ECSO(Eyes Closed, Safety On), a novel training-free protecting approach that exploits the inherent safety awareness of MLLMs, and generates safer responses via adaptively transforming unsafe images into texts to activate intrinsic safety mechanism of pre-aligned LLMs in MLLMs. Experiments on five state-of-the-art (SoTA) MLLMs demonstrate that our ECSO enhances model safety significantly (e.g., a 37.6% improvement on the MM-SafetyBench (SD+OCR), and 71.3% on VLSafe for the LLaVA-1.5-7B), while consistently maintaining utility results on common MLLM benchmarks. Furthermore, we show that ECSO can be used as a data engine to generate supervised-finetuning (SFT) data for MLLM alignment without extra human intervention.
Abstract:Masked Autoencoder~(MAE) is a prevailing self-supervised learning method that achieves promising results in model pre-training. However, when the various downstream tasks have data distributions different from the pre-training data, the semantically irrelevant pre-training information might result in negative transfer, impeding MAE's scalability. To address this issue, we propose a novel MAE-based pre-training paradigm, Mixture of Cluster-conditional Experts (MoCE), which can be trained once but provides customized pre-training models for diverse downstream tasks. Different from the mixture of experts (MoE), our MoCE trains each expert only with semantically relevant images by using cluster-conditional gates. Thus, each downstream task can be allocated to its customized model pre-trained with data most similar to the downstream data. Experiments on a collection of 11 downstream tasks show that MoCE outperforms the vanilla MAE by 2.45\% on average. It also obtains new state-of-the-art self-supervised learning results on detection and segmentation.
Abstract:Knowledge Graph Completion (KGC) is crucial for addressing knowledge graph incompleteness and supporting downstream applications. Many models have been proposed for KGC. They can be categorized into two main classes: triple-based and text-based approaches. Triple-based methods struggle with long-tail entities due to limited structural information and imbalanced entity distributions. Text-based methods alleviate this issue but require costly training for language models and specific finetuning for knowledge graphs, which limits their efficiency. To alleviate these limitations, in this paper, we propose KICGPT, a framework that integrates a large language model (LLM) and a triple-based KGC retriever. It alleviates the long-tail problem without incurring additional training overhead. KICGPT uses an in-context learning strategy called Knowledge Prompt, which encodes structural knowledge into demonstrations to guide the LLM. Empirical results on benchmark datasets demonstrate the effectiveness of KICGPT with smaller training overhead and no finetuning.