Abstract:3D microscopic cerebrovascular images are characterized by their high resolution, presenting significant annotation challenges, large data volumes, and intricate variations in detail. Together, these factors make achieving high-quality, efficient whole-brain segmentation particularly demanding. In this paper, we propose a novel Vessel-Pattern-Based Semi-Supervised Distillation pipeline (VpbSD) to address the challenges of 3D microscopic cerebrovascular segmentation. This pipeline initially constructs a vessel-pattern codebook that captures diverse vascular structures from unlabeled data during the teacher model's pretraining phase. In the knowledge distillation stage, the codebook facilitates the transfer of rich knowledge from a heterogeneous teacher model to a student model, while the semi-supervised approach further enhances the student model's exposure to diverse learning samples. Experimental results on real-world data, including comparisons with state-of-the-art methods and ablation studies, demonstrate that our pipeline and its individual components effectively address the challenges inherent in microscopic cerebrovascular segmentation.
Abstract:Heuristics are commonly used to tackle diverse search and optimization problems. Design heuristics usually require tedious manual crafting with domain knowledge. Recent works have incorporated large language models (LLMs) into automatic heuristic search leveraging their powerful language and coding capacity. However, existing research focuses on the optimal performance on the target problem as the sole objective, neglecting other criteria such as efficiency and scalability, which are vital in practice. To tackle this challenge, we propose to model heuristic search as a multi-objective optimization problem and consider introducing other practical criteria beyond optimal performance. Due to the complexity of the search space, conventional multi-objective optimization methods struggle to effectively handle multi-objective heuristic search. We propose the first LLM-based multi-objective heuristic search framework, Multi-objective Evolution of Heuristic (MEoH), which integrates LLMs in a zero-shot manner to generate a non-dominated set of heuristics to meet multiple design criteria. We design a new dominance-dissimilarity mechanism for effective population management and selection, which incorporates both code dissimilarity in the search space and dominance in the objective space. MEoH is demonstrated in two well-known combinatorial optimization problems: the online Bin Packing Problem (BPP) and the Traveling Salesman Problem (TSP). Results indicate that a variety of elite heuristics are automatically generated in a single run, offering more trade-off options than existing methods. It successfully achieves competitive or superior performance while improving efficiency up to 10 times. Moreover, we also observe that the multi-objective search introduces novel insights into heuristic design and leads to the discovery of diverse heuristics.
Abstract:Effective retinal vessel segmentation requires a sophisticated integration of global contextual awareness and local vessel continuity. To address this challenge, we propose the Graph Capsule Convolution Network (GCC-UNet), which merges capsule convolutions with CNNs to capture both local and global features. The Graph Capsule Convolution operator is specifically designed to enhance the representation of global context, while the Selective Graph Attention Fusion module ensures seamless integration of local and global information. To further improve vessel continuity, we introduce the Bottleneck Graph Attention module, which incorporates Channel-wise and Spatial Graph Attention mechanisms. The Multi-Scale Graph Fusion module adeptly combines features from various scales. Our approach has been rigorously validated through experiments on widely used public datasets, with ablation studies confirming the efficacy of each component. Comparative results highlight GCC-UNet's superior performance over existing methods, setting a new benchmark in retinal vessel segmentation. Notably, this work represents the first integration of vanilla, graph, and capsule convolutional techniques in the domain of medical image segmentation.
Abstract:Multiobjective optimization problems (MOPs) are prevalent in machine learning, with applications in multi-task learning, learning under fairness or robustness constraints, etc. Instead of reducing multiple objective functions into a scalar objective, MOPs aim to optimize for the so-called Pareto optimality or Pareto set learning, which involves optimizing more than one objective function simultaneously, over models with millions of parameters. Existing benchmark libraries for MOPs mainly focus on evolutionary algorithms, most of which are zeroth-order methods that do not effectively utilize higher-order information from objectives and cannot scale to large-scale models with millions of parameters. In light of the above gap, this paper introduces LibMOON, the first multiobjective optimization library that supports state-of-the-art gradient-based methods, provides a fair benchmark, and is open-sourced for the community.
Abstract:Video generation models hold substantial potential in areas such as filmmaking. However, current video diffusion models need high computational costs and produce suboptimal results due to high complexity of video generation task. In this paper, we propose \textbf{ConFiner}, an efficient high-quality video generation framework that decouples video generation into easier subtasks: structure \textbf{con}trol and spatial-temporal re\textbf{fine}ment. It can generate high-quality videos with chain of off-the-shelf diffusion model experts, each expert responsible for a decoupled subtask. During the refinement, we introduce coordinated denoising, which can merge multiple diffusion experts' capabilities into a single sampling. Furthermore, we design ConFiner-Long framework, which can generate long coherent video with three constraint strategies on ConFiner. Experimental results indicate that with only 10\% of the inference cost, our ConFiner surpasses representative models like Lavie and Modelscope across all objective and subjective metrics. And ConFiner-Long can generate high-quality and coherent videos with up to 600 frames.
Abstract:Automated heuristic design (AHD) has gained considerable attention for its potential to automate the development of effective heuristics. The recent advent of large language models (LLMs) has paved a new avenue for AHD, with initial efforts focusing on framing AHD as an evolutionary program search (EPS) problem. However, inconsistent benchmark settings, inadequate baselines, and a lack of detailed component analysis have left the necessity of integrating LLMs with search strategies and the true progress achieved by existing LLM-based EPS methods to be inadequately justified. This work seeks to fulfill these research queries by conducting a large-scale benchmark comprising four LLM-based EPS methods and four AHD problems across nine LLMs and five independent runs. Our extensive experiments yield meaningful insights, providing empirical grounding for the importance of evolutionary search in LLM-based AHD approaches, while also contributing to the advancement of future EPS algorithmic development. To foster accessibility and reproducibility, we have fully open-sourced our benchmark and corresponding results.
Abstract:Deep Reinforcement Learning (DRL) is regarded as a promising tool for optical network optimization. However, the flexibility and efficiency of current DRL-based solutions for optical network optimization require further improvement. Currently, generative models have showcased their significant performance advantages across various domains. In this paper, we introduce OpticGAI, the AI-generated policy design paradigm for optical networks. In detail, it is implemented as a novel DRL framework that utilizes generative models to learn the optimal policy network. Furthermore, we assess the performance of OpticGAI on two NP-hard optical network problems, Routing and Wavelength Assignment (RWA) and dynamic Routing, Modulation, and Spectrum Allocation (RMSA), to show the feasibility of the AI-generated policy paradigm. Simulation results have shown that OpticGAI achieves the highest reward and the lowest blocking rate of both RWA and RMSA problems. OpticGAI poses a promising direction for future research on generative AI-enhanced flexible optical network optimization.
Abstract:Multi-objective optimization can be found in many real-world applications where some conflicting objectives can not be optimized by a single solution. Existing optimization methods often focus on finding a set of Pareto solutions with different optimal trade-offs among the objectives. However, the required number of solutions to well approximate the whole Pareto optimal set could be exponentially large with respect to the number of objectives, which makes these methods unsuitable for handling many optimization objectives. In this work, instead of finding a dense set of Pareto solutions, we propose a novel Tchebycheff set scalarization method to find a few representative solutions (e.g., 5) to cover a large number of objectives (e.g., $>100$) in a collaborative and complementary manner. In this way, each objective can be well addressed by at least one solution in the small solution set. In addition, we further develop a smooth Tchebycheff set scalarization approach for efficient optimization with good theoretical guarantees. Experimental studies on different problems with many optimization objectives demonstrate the effectiveness of our proposed method.
Abstract:Confocal microscopy, a critical advancement in optical imaging, is widely applied because of its excellent anti-noise ability. However, it has low imaging efficiency and can cause phototoxicity. Optical-sectioning structured illumination microscopy (OS-SIM) can overcome the limitations of confocal microscopy but still face challenges in imaging depth and signal-to-noise ratio (SNR). We introduce the concept of confocal imaging into OS-SIM and propose confocal structured illumination microscopy (CSIM) to enhance the imaging performance of OS-SIM. CSIM exploits the principle of dual photography to reconstruct a dual image from each pixel of the camera. The reconstructed dual image is equivalent to the image obtained by using the spatial light modulator (SLM) as a virtual camera, enabling the separation of the conjugate and non-conjugate signals recorded by the camera pixel. We can reject the non-conjugate signals by extracting the conjugate signal from each dual image to reconstruct a confocal image when establishing the conjugate relationship between the camera and the SLM. We have constructed the theoretical framework of CSIM. Optical-sectioning experimental results demonstrate that CSIM can reconstruct images with superior SNR and greater imaging depth compared with existing OS-SIM. CSIM is expected to expand the application scope of OS-SIM.
Abstract:Neural combinatorial optimization (NCO) is a promising learning-based approach to solving various vehicle routing problems without much manual algorithm design. However, the current NCO methods mainly focus on the in-distribution performance, while the real-world problem instances usually come from different distributions. A costly fine-tuning approach or generalized model retraining from scratch could be needed to tackle the out-of-distribution instances. Unlike the existing methods, this work investigates an efficient prompt learning approach in NCO for cross-distribution adaptation. To be concrete, we propose a novel prompt learning method to facilitate fast zero-shot adaptation of a pre-trained model to solve routing problem instances from different distributions. The proposed model learns a set of prompts among various distributions and then selects the best-matched one to prompt a pre-trained attention model for each problem instance. Extensive experiments show that the proposed prompt learning approach facilitates the fast adaptation of pre-trained routing models. It also outperforms existing generalized models on both in-distribution prediction and zero-shot generalization to a diverse set of new tasks. Our code implementation is available online https://github.com/FeiLiu36/PromptVRP.