Abstract:Fault diagnosis (FD) is essential for maintaining operational safety and minimizing economic losses by detecting system abnormalities. Recently, deep learning (DL)-driven FD methods have gained prominence, offering significant improvements in precision and adaptability through the utilization of extensive datasets and advanced DL models. Modern industrial environments, however, demand FD methods that can handle new fault types, dynamic conditions, large-scale data, and provide real-time responses with minimal prior information. Although online continual learning (OCL) demonstrates potential in addressing these requirements by enabling DL models to continuously learn from streaming data, it faces challenges such as data redundancy, imbalance, and limited labeled data. To overcome these limitations, we propose SRTFD, a scalable real-time fault diagnosis framework that enhances OCL with three critical methods: Retrospect Coreset Selection (RCS), which selects the most relevant data to reduce redundant training and improve efficiency; Global Balance Technique (GBT), which ensures balanced coreset selection and robust model performance; and Confidence and Uncertainty-driven Pseudo-label Learning (CUPL), which updates the model using unlabeled data for continuous adaptation. Extensive experiments on a real-world dataset and two public simulated datasets demonstrate SRTFD's effectiveness and potential for providing advanced, scalable, and precise fault diagnosis in modern industrial systems.
Abstract:In copy-move tampering operations, perpetrators often employ techniques, such as blurring, to conceal tampering traces, posing significant challenges to the detection of object-level targets with intact structures. Focus on these challenges, this paper proposes an Object-level Copy-Move Forgery Image Detection based on Inconsistency Mining (IMNet). To obtain complete object-level targets, we customize prototypes for both the source and tampered regions and dynamically update them. Additionally, we extract inconsistent regions between coarse similar regions obtained through self-correlation calculations and regions composed of prototypes. The detected inconsistent regions are used as supplements to coarse similar regions to refine pixel-level detection. We operate experiments on three public datasets which validate the effectiveness and the robustness of the proposed IMNet.
Abstract:Graph Neural Networks (GNNs) with differential privacy have been proposed to preserve graph privacy when nodes represent personal and sensitive information. However, the existing methods ignore that nodes with different importance may yield diverse privacy demands, which may lead to over-protect some nodes and decrease model utility. In this paper, we study the problem of importance-grained privacy, where nodes contain personal data that need to be kept private but are critical for training a GNN. We propose NAP-GNN, a node-importance-grained privacy-preserving GNN algorithm with privacy guarantees based on adaptive differential privacy to safeguard node information. First, we propose a Topology-based Node Importance Estimation (TNIE) method to infer unknown node importance with neighborhood and centrality awareness. Second, an adaptive private aggregation method is proposed to perturb neighborhood aggregation from node-importance-grain. Third, we propose to privately train a graph learning algorithm on perturbed aggregations in adaptive residual connection mode over multi-layers convolution for node-wise tasks. Theoretically analysis shows that NAP-GNN satisfies privacy guarantees. Empirical experiments over real-world graph datasets show that NAP-GNN achieves a better trade-off between privacy and accuracy.