Abstract:As AI systems become more capable, widely deployed, and increasingly autonomous in critical areas such as cybersecurity, biological research, and healthcare, ensuring their safety and alignment with human values is paramount. Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks, which has been the primary focus of existing research. More recently, its potential application to AI safety has gained attention. In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety, particularly in managing dual-use knowledge in sensitive domains like cybersecurity and chemical, biological, radiological, and nuclear (CBRN) safety. In these contexts, information can be both beneficial and harmful, and models may combine seemingly harmless information for harmful purposes -- unlearning this information could strongly affect beneficial uses. We provide an overview of inherent constraints and open problems, including the broader side effects of unlearning dangerous knowledge, as well as previously unexplored tensions between unlearning and existing safety mechanisms. Finally, we investigate challenges related to evaluation, robustness, and the preservation of safety features during unlearning. By mapping these limitations and open challenges, we aim to guide future research toward realistic applications of unlearning within a broader AI safety framework, acknowledging its limitations and highlighting areas where alternative approaches may be required.
Abstract:Artificial Intelligence (AI) has apparently become one of the most important techniques discovered by humans in history while the human brain is widely recognized as one of the most complex systems in the universe. One fundamental critical question which would affect human sustainability remains open: Will artificial intelligence (AI) evolve to surpass human intelligence in the future? This paper shows that in theory new AI twins with fresh cellular level of AI techniques for neuroscience could approximate the brain and its functioning systems (e.g. perception and cognition functions) with any expected small error and AI without restrictions could surpass human intelligence with probability one in the end. This paper indirectly proves the validity of the conjecture made by Frank Rosenblatt 70 years ago about the potential capabilities of AI, especially in the realm of artificial neural networks. Intelligence is just one of fortuitous but sophisticated creations of the nature which has not been fully discovered. Like mathematics and physics, with no restrictions artificial intelligence would lead to a new subject with its self-contained systems and principles. We anticipate that this paper opens new doors for 1) AI twins and other AI techniques to be used in cellular level of efficient neuroscience dynamic analysis, functioning analysis of the brain and brain illness solutions; 2) new worldwide collaborative scheme for interdisciplinary teams concurrently working on and modelling different types of neurons and synapses and different level of functioning subsystems of the brain with AI techniques; 3) development of low energy of AI techniques with the aid of fundamental neuroscience properties; and 4) new controllable, explainable and safe AI techniques with reasoning capabilities of discovering principles in nature.
Abstract:Large language models (LLMs) have seen significant advancements, achieving superior performance in various Natural Language Processing (NLP) tasks, from understanding to reasoning. However, they remain vulnerable to backdoor attacks, where models behave normally for standard queries but generate harmful responses or unintended output when specific triggers are activated. Existing backdoor defenses often suffer from drawbacks that they either focus on detection without removal, rely on rigid assumptions about trigger properties, or prove to be ineffective against advanced attacks like multi-trigger backdoors. In this paper, we present a novel method to eliminate backdoor behaviors from LLMs through the construction of information conflicts using both internal and external mechanisms. Internally, we leverage a lightweight dataset to train a conflict model, which is then merged with the backdoored model to neutralize malicious behaviors by embedding contradictory information within the model's parametric memory. Externally, we incorporate convincing contradictory evidence into the prompt to challenge the model's internal backdoor knowledge. Experimental results on classification and conversational tasks across 4 widely used LLMs demonstrate that our method outperforms 8 state-of-the-art backdoor defense baselines. We can reduce the attack success rate of advanced backdoor attacks by up to 98% while maintaining over 90% clean data accuracy. Furthermore, our method has proven to be robust against adaptive backdoor attacks. The code will be open-sourced upon publication.
Abstract:Federated Learning (FL) emerged as a paradigm for conducting machine learning across broad and decentralized datasets, promising enhanced privacy by obviating the need for direct data sharing. However, recent studies show that attackers can steal private data through model manipulation or gradient analysis. Existing attacks are constrained by low theft quantity or low-resolution data, and they are often detected through anomaly monitoring in gradients or weights. In this paper, we propose a novel data-reconstruction attack leveraging malicious code injection, supported by two key techniques, i.e., distinctive and sparse encoding design and block partitioning. Unlike conventional methods that require detectable changes to the model, our method stealthily embeds a hidden model using parameter sharing to systematically extract sensitive data. The Fibonacci-based index design ensures efficient, structured retrieval of memorized data, while the block partitioning method enhances our method's capability to handle high-resolution images by dividing them into smaller, manageable units. Extensive experiments on 4 datasets confirmed that our method is superior to the five state-of-the-art data-reconstruction attacks under the five respective detection methods. Our method can handle large-scale and high-resolution data without being detected or mitigated by state-of-the-art data reconstruction defense methods. In contrast to baselines, our method can be directly applied to both FedAVG and FedSGD scenarios, underscoring the need for developers to devise new defenses against such vulnerabilities. We will open-source our code upon acceptance.
Abstract:Federated learning facilitates collaborative machine learning, enabling multiple participants to collectively develop a shared model while preserving the privacy of individual data. The growing importance of the "right to be forgotten" calls for effective mechanisms to facilitate data removal upon request. In response, federated unlearning (FU) has been developed to efficiently eliminate the influence of specific data from the model. Current FU methods primarily rely on approximate unlearning strategies, which seek to balance data removal efficacy with computational and communication costs, but often fail to completely erase data influence. To address these limitations, we propose FedUHB, a novel exact unlearning approach that leverages the Polyak heavy ball optimization technique, a first-order method, to achieve rapid retraining. In addition, we introduce a dynamic stopping mechanism to optimize the termination of the unlearning process. Our extensive experiments show that FedUHB not only enhances unlearning efficiency but also preserves robust model performance after unlearning. Furthermore, the dynamic stopping mechanism effectively reduces the number of unlearning iterations, conserving both computational and communication resources. FedUHB can be proved as an effective and efficient solution for exact data removal in federated learning settings.
Abstract:Federated unlearning (FU) offers a promising solution to effectively address the need to erase the impact of specific clients' data on the global model in federated learning (FL), thereby granting individuals the ``Right to be Forgotten". The most straightforward approach to achieve unlearning is to train the model from scratch, excluding clients who request data removal, but it is resource-intensive. Current state-of-the-art FU methods extend traditional FL frameworks by leveraging stored historical updates, enabling more efficient unlearning than training from scratch. However, the use of stored updates introduces significant privacy risks. Adversaries with access to these updates can potentially reconstruct clients' local data, a well-known vulnerability in the privacy domain. While privacy-enhanced techniques exist, their applications to FU scenarios that balance unlearning efficiency with privacy protection remain underexplored. To address this gap, we propose FedADP, a method designed to achieve both efficiency and privacy preservation in FU. Our approach incorporates an adaptive differential privacy (DP) mechanism, carefully balancing privacy and unlearning performance through a novel budget allocation strategy tailored for FU. FedADP also employs a dual-layered selection process, focusing on global models with significant changes and client updates closely aligned with the global model, reducing storage and communication costs. Additionally, a novel calibration method is introduced to facilitate effective unlearning. Extensive experimental results demonstrate that FedADP effectively manages the trade-off between unlearning efficiency and privacy protection.
Abstract:Data sharing is a prerequisite for collaborative innovation, enabling organizations to leverage diverse datasets for deeper insights. In real-world applications like FinTech and Smart Manufacturing, transactional data, often in tabular form, are generated and analyzed for insight generation. However, such datasets typically contain sensitive personal/business information, raising privacy concerns and regulatory risks. Data synthesis tackles this by generating artificial datasets that preserve the statistical characteristics of real data, removing direct links to individuals. However, attackers can still infer sensitive information using background knowledge. Differential privacy offers a solution by providing provable and quantifiable privacy protection. Consequently, differentially private data synthesis has emerged as a promising approach to privacy-aware data sharing. This paper provides a comprehensive overview of existing differentially private tabular data synthesis methods, highlighting the unique challenges of each generation model for generating tabular data under differential privacy constraints. We classify the methods into statistical and deep learning-based approaches based on their generation models, discussing them in both centralized and distributed environments. We evaluate and compare those methods within each category, highlighting their strengths and weaknesses in terms of utility, privacy, and computational complexity. Additionally, we present and discuss various evaluation methods for assessing the quality of the synthesized data, identify research gaps in the field and directions for future research.
Abstract:Skeleton Action Recognition (SAR) has attracted significant interest for its efficient representation of the human skeletal structure. Despite its advancements, recent studies have raised security concerns in SAR models, particularly their vulnerability to adversarial attacks. However, such strategies are limited to digital scenarios and ineffective in physical attacks, limiting their real-world applicability. To investigate the vulnerabilities of SAR in the physical world, we introduce the Physical Skeleton Backdoor Attacks (PSBA), the first exploration of physical backdoor attacks against SAR. Considering the practicalities of physical execution, we introduce a novel trigger implantation method that integrates infrequent and imperceivable actions as triggers into the original skeleton data. By incorporating a minimal amount of this manipulated data into the training set, PSBA enables the system misclassify any skeleton sequences into the target class when the trigger action is present. We examine the resilience of PSBA in both poisoned and clean-label scenarios, demonstrating its efficacy across a range of datasets, poisoning ratios, and model architectures. Additionally, we introduce a trigger-enhancing strategy to strengthen attack performance in the clean label setting. The robustness of PSBA is tested against three distinct backdoor defenses, and the stealthiness of PSBA is evaluated using two quantitative metrics. Furthermore, by employing a Kinect V2 camera, we compile a dataset of human actions from the real world to mimic physical attack situations, with our findings confirming the effectiveness of our proposed attacks. Our project website can be found at https://qichenzheng.github.io/psba-website.
Abstract:Deep neural networks are proven to be vulnerable to data poisoning attacks. Recently, a specific type of data poisoning attack known as availability attacks has led to the failure of data utilization for model learning by adding imperceptible perturbations to images. Consequently, it is quite beneficial and challenging to detect poisoned samples, also known as Unlearnable Examples (UEs), from a mixed dataset. In response, we propose an Iterative Filtering approach for UEs identification. This method leverages the distinction between the inherent semantic mapping rules and shortcuts, without the need for any additional information. We verify that when training a classifier on a mixed dataset containing both UEs and clean data, the model tends to quickly adapt to the UEs compared to the clean data. Due to the accuracy gaps between training with clean/poisoned samples, we employ a model to misclassify clean samples while correctly identifying the poisoned ones. The incorporation of additional classes and iterative refinement enhances the model's ability to differentiate between clean and poisoned samples. Extensive experiments demonstrate the superiority of our method over state-of-the-art detection approaches across various attacks, datasets, and poison ratios, significantly reducing the Half Total Error Rate (HTER) compared to existing methods.
Abstract:Emerging Internet of Things (IoT) platforms provide sophisticated capabilities to automate IoT services by enabling occupants to create trigger-action rules. Multiple trigger-action rules can physically interact with each other via shared environment channels, such as temperature, humidity, and illumination. We refer to inter-rule interactions via shared environment channels as a physical inter-rule vulnerability. Such vulnerability can be exploited by attackers to launch attacks against IoT systems. We propose a new framework to proactively discover possible physical inter-rule interactions from user requirement specifications (i.e., descriptions) using a deep learning approach. Specifically, we utilize the Transformer model to generate trigger-action rules from their associated descriptions. We discover two types of physical inter-rule vulnerabilities and determine associated environment channels using natural language processing (NLP) tools. Given the extracted trigger-action rules and associated environment channels, an approach is proposed to identify hidden physical inter-rule vulnerabilities among them. Our experiment on 27983 IFTTT style rules shows that the Transformer can successfully extract trigger-action rules from descriptions with 95.22% accuracy. We also validate the effectiveness of our approach on 60 SmartThings official IoT apps and discover 99 possible physical inter-rule vulnerabilities.