Abstract:Large Language Models (LLMs) are increasingly vulnerable to Prompt Injection (PI) attacks, where adversarial instructions hidden within retrieved contexts hijack the model's execution flow. Current defenses typically face a critical trade-off: prevention-based fine-tuning often degrades general utility via the "alignment tax", while detection-based filtering incurs prohibitive latency and memory costs. To bridge this gap, we propose RedVisor, a unified framework that synthesizes the explainability of detection systems with the seamless integration of prevention strategies. To the best of our knowledge, RedVisor is the first approach to leverage fine-grained reasoning paths to simultaneously detect attacks and guide the model's safe response. We implement this via a lightweight, removable adapter positioned atop the frozen backbone. This adapter serves a dual function: it first generates an explainable analysis that precisely localizes the injection and articulates the threat, which then explicitly conditions the model to reject the malicious command. Uniquely, the adapter is active only during this reasoning phase and is effectively muted during the subsequent response generation. This architecture yields two distinct advantages: (1) it mathematically preserves the backbone's original utility on benign inputs; and (2) it enables a novel KV Cache Reuse strategy, eliminating the redundant prefill computation inherent to decoupled pipelines. We further pioneer the integration of this defense into the vLLM serving engine with custom kernels. Experiments demonstrate that RedVisor outperforms state-of-the-art defenses in detection accuracy and throughput while incurring negligible utility loss.
Abstract:Fact-checking systems with search-enabled large language models (LLMs) have shown strong potential for verifying claims by dynamically retrieving external evidence. However, the robustness of such systems against adversarial attack remains insufficiently understood. In this work, we study adversarial claim attacks against search-enabled LLM-based fact-checking systems under a realistic input-only threat model. We propose DECEIVE-AFC, an agent-based adversarial attack framework that integrates novel claim-level attack strategies and adversarial claim validity evaluation principles. DECEIVE-AFC systematically explores adversarial attack trajectories that disrupt search behavior, evidence retrieval, and LLM-based reasoning without relying on access to evidence sources or model internals. Extensive evaluations on benchmark datasets and real-world systems demonstrate that our attacks substantially degrade verification performance, reducing accuracy from 78.7% to 53.7%, and significantly outperform existing claim-based attack baselines with strong cross-system transferability.
Abstract:Large language model (LLM) agents with extended autonomy unlock new capabilities, but also introduce heightened challenges for LLM safety. In particular, an LLM agent may pursue objectives that deviate from human values and ethical norms, a risk known as value misalignment. Existing evaluations primarily focus on responses to explicit harmful input or robustness against system failure, while value misalignment in realistic, fully benign, and agentic settings remains largely underexplored. To fill this gap, we first formalize the Loss-of-Control risk and identify the previously underexamined Intrinsic Value Misalignment (Intrinsic VM). We then introduce IMPRESS (Intrinsic Value Misalignment Probes in REalistic Scenario Set), a scenario-driven framework for systematically assessing this risk. Following our framework, we construct benchmarks composed of realistic, fully benign, and contextualized scenarios, using a multi-stage LLM generation pipeline with rigorous quality control. We evaluate Intrinsic VM on 21 state-of-the-art LLM agents and find that it is a common and broadly observed safety risk across models. Moreover, the misalignment rates vary by motives, risk types, model scales, and architectures. While decoding strategies and hyperparameters exhibit only marginal influence, contextualization and framing mechanisms significantly shape misalignment behaviors. Finally, we conduct human verification to validate our automated judgments and assess existing mitigation strategies, such as safety prompting and guardrails, which show instability or limited effectiveness. We further demonstrate key use cases of IMPRESS across the AI Ecosystem. Our code and benchmark will be publicly released upon acceptance.
Abstract:RAG has emerged as a key technique for enhancing response quality of LLMs without high computational cost. In traditional architectures, RAG services are provided by a single entity that hosts the dataset within a trusted local environment. However, individuals or small organizations often lack the resources to maintain data storage servers, leading them to rely on outsourced cloud storage. This dependence on untrusted third-party services introduces privacy risks. Embedding-based retrieval mechanisms, commonly used in RAG systems, are vulnerable to privacy leakage such as vector-to-text reconstruction attacks and structural leakage via vector analysis. Several privacy-preserving RAG techniques have been proposed but most existing approaches rely on partially homomorphic encryption, which incurs substantial computational overhead. To address these challenges, we propose an efficient privacy-preserving RAG framework (ppRAG) tailored for untrusted cloud environments that defends against vector-to-text attack, vector analysis, and query analysis. We propose Conditional Approximate Distance-Comparison-Preserving Symmetric Encryption (CAPRISE) that encrypts embeddings while still allowing the cloud to compute similarity between an encrypted query and the encrypted database embeddings. CAPRISE preserves only the relative distance ordering between the encrypted query and each encrypted database embedding, without exposing inter-database distances, thereby enhancing both privacy and efficiency. To mitigate query analysis, we introduce DP by perturbing the query embedding prior to encryption, preventing the cloud from inferring sensitive patterns. Experimental results show that ppRAG achieves efficient processing throughput, high retrieval accuracy, strong privacy guarantees, making it a practical solution for resource-constrained users seeking secure cloud-augmented LLMs.
Abstract:The agent-tool communication loop is a critical attack surface in modern Large Language Model (LLM) agents. Existing Denial-of-Service (DoS) attacks, primarily triggered via user prompts or injected retrieval-augmented generation (RAG) context, are ineffective for this new paradigm. They are fundamentally single-turn and often lack a task-oriented approach, making them conspicuous in goal-oriented workflows and unable to exploit the compounding costs of multi-turn agent-tool interactions. We introduce a stealthy, multi-turn economic DoS attack that operates at the tool layer under the guise of a correctly completed task. Our method adjusts text-visible fields and a template-governed return policy in a benign, Model Context Protocol (MCP)-compatible tool server, optimizing these edits with a Monte Carlo Tree Search (MCTS) optimizer. These adjustments leave function signatures unchanged and preserve the final payload, steering the agent into prolonged, verbose tool-calling sequences using text-only notices. This compounds costs across turns, escaping single-turn caps while keeping the final answer correct to evade validation. Across six LLMs on the ToolBench and BFCL benchmarks, our attack expands tasks into trajectories exceeding 60,000 tokens, inflates costs by up to 658x, and raises energy by 100-560x. It drives GPU KV cache occupancy from <1% to 35-74% and cuts co-running throughput by approximately 50%. Because the server remains protocol-compatible and task outcomes are correct, conventional checks fail. These results elevate the agent-tool interface to a first-class security frontier, demanding a paradigm shift from validating final answers to monitoring the economic and computational cost of the entire agentic process.
Abstract:Image generation models (IGMs), while capable of producing impressive and creative content, often memorize a wide range of undesirable concepts from their training data, leading to the reproduction of unsafe content such as NSFW imagery and copyrighted artistic styles. Such behaviors pose persistent safety and compliance risks in real-world deployments and cannot be reliably mitigated by post-hoc filtering, owing to the limited robustness of such mechanisms and a lack of fine-grained semantic control. Recent unlearning methods seek to erase harmful concepts at the model level, which exhibit the limitations of requiring costly retraining, degrading the quality of benign generations, or failing to withstand prompt paraphrasing and adversarial attacks. To address these challenges, we introduce SafeRedir, a lightweight inference-time framework for robust unlearning via prompt embedding redirection. Without modifying the underlying IGMs, SafeRedir adaptively routes unsafe prompts toward safe semantic regions through token-level interventions in the embedding space. The framework comprises two core components: a latent-aware multi-modal safety classifier for identifying unsafe generation trajectories, and a token-level delta generator for precise semantic redirection, equipped with auxiliary predictors for token masking and adaptive scaling to localize and regulate the intervention. Empirical results across multiple representative unlearning tasks demonstrate that SafeRedir achieves effective unlearning capability, high semantic and perceptual preservation, robust image quality, and enhanced resistance to adversarial attacks. Furthermore, SafeRedir generalizes effectively across a variety of diffusion backbones and existing unlearned models, validating its plug-and-play compatibility and broad applicability. Code and data are available at https://github.com/ryliu68/SafeRedir.
Abstract:Time series prediction plays a pivotal role across diverse domains such as finance, healthcare, energy systems, and environmental modeling. However, existing approaches often struggle to balance efficiency, scalability, and accuracy, particularly when handling long-range dependencies and irregularly sampled data. To address these challenges, we propose MODE, a unified framework that integrates Low-Rank Neural Ordinary Differential Equations (Neural ODEs) with an Enhanced Mamba architecture. As illustrated in our framework, the input sequence is first transformed by a Linear Tokenization Layer and then processed through multiple Mamba Encoder blocks, each equipped with an Enhanced Mamba Layer that employs Causal Convolution, SiLU activation, and a Low-Rank Neural ODE enhancement to efficiently capture temporal dynamics. This low-rank formulation reduces computational overhead while maintaining expressive power. Furthermore, a segmented selective scanning mechanism, inspired by pseudo-ODE dynamics, adaptively focuses on salient subsequences to improve scalability and long-range sequence modeling. Extensive experiments on benchmark datasets demonstrate that MODE surpasses existing baselines in both predictive accuracy and computational efficiency. Overall, our contributions include: (1) a unified and efficient architecture for long-term time series modeling, (2) integration of Mamba's selective scanning with low-rank Neural ODEs for enhanced temporal representation, and (3) substantial improvements in efficiency and scalability enabled by low-rank approximation and dynamic selective scanning.
Abstract:Federated unlearning has become an attractive approach to address privacy concerns in collaborative machine learning, for situations when sensitive data is remembered by AI models during the machine learning process. It enables the removal of specific data influences from trained models, aligning with the growing emphasis on the "right to be forgotten." While extensively studied in horizontal federated learning, unlearning in vertical federated learning (VFL) remains challenging due to the distributed feature architecture. VFL unlearning includes sample unlearning that removes specific data points' influence and label unlearning that removes entire classes. Since different parties hold complementary features of the same samples, unlearning tasks require cross-party coordination, creating computational overhead and complexities from feature interdependencies. To address such challenges, we propose FedORA (Federated Optimization for data Removal via primal-dual Algorithm), designed for sample and label unlearning in VFL. FedORA formulates the removal of certain samples or labels as a constrained optimization problem solved using a primal-dual framework. Our approach introduces a new unlearning loss function that promotes classification uncertainty rather than misclassification. An adaptive step size enhances stability, while an asymmetric batch design, considering the prior influence of the remaining data on the model, handles unlearning and retained data differently to efficiently reduce computational costs. We provide theoretical analysis proving that the model difference between FedORA and Train-from-scratch is bounded, establishing guarantees for unlearning effectiveness. Experiments on tabular and image datasets demonstrate that FedORA achieves unlearning effectiveness and utility preservation comparable to Train-from-scratch with reduced computation and communication overhead.
Abstract:Machine unlearning (MU) seeks to eliminate the influence of specific training examples from deployed models. As large language models (LLMs) become widely used, managing risks arising from insufficient forgetting or utility loss is increasingly crucial. Current MU techniques lack effective mechanisms for evaluating and controlling these risks, hindering the selection of strategies that appropriately balance safety and utility, and raising trust concerns surrounding the "right to be forgotten." To address these issues, we propose FROC, a unified framework with Risk-Optimized Control for machine unlearning in LLMs. FROC is built around a conformal-style risk-control formulation that expresses a user-specified risk budget on unlearning behavior. This probability-based constraint enables FROC to compare MU strategies, identify feasible operating regions, and guide hyperparameter selection according to desired trade-offs between forgetting sufficiency and utility preservation. To operationalize this constraint, FROC introduces a smoothly varying continuous risk model that aggregates forgetting deficiency and utility degradation into a single configuration-level score. Building on conformal risk analysis, FROC computes (1) the Conformal Unlearning Risk (CUR), a data-driven estimated value on the probability that forgotten samples continue to influence model predictions, and (2) risk-controlled configuration sets, which identify unlearning hyperparameters that are valid under the specified risk budget. Experiments across multiple LLM MU methods demonstrate that FROC produces stable, interpretable risk landscapes and reveals consistent relationships between unlearning configurations, semantic shift, and utility impact. FROC reframes MU as a controllable, risk-aware process and offers a practical foundation for managing unlearning behavior in large-scale LLM deployments.
Abstract:As a new and promising approach, existing machine unlearning (MU) works typically emphasize theoretical formulations or optimization objectives to achieve knowledge removal. However, when deployed in real-world scenarios, such solutions typically face scalability issues and have to address practical requirements such as full access to original datasets and model. In contrast to the existing approaches, we regard classification training as a sequential process where classes are learned sequentially, which we call \emph{inductive approach}. Unlearning can then be done by reversing the last training sequence. This is implemented by appending a projection-redistribution layer in the end of the model. Such an approach does not require full access to the original dataset or the model, addressing the challenges of existing methods. This enables modular and model-agnostic deployment as an output filter into existing classification pipelines with minimal alterations. We conducted multiple experiments across multiple datasets including image (CIFAR-10/100 using CNN-based model) and tabular datasets (Covertype using tree-based model). Experiment results show consistently similar output to a fully retrained model with a high computational cost reduction. This demonstrates the applicability, scalability, and system compatibility of our solution while maintaining the performance of the output in a more practical setting.