Abstract:Federated unlearning (FU) offers a promising solution to effectively address the need to erase the impact of specific clients' data on the global model in federated learning (FL), thereby granting individuals the ``Right to be Forgotten". The most straightforward approach to achieve unlearning is to train the model from scratch, excluding clients who request data removal, but it is resource-intensive. Current state-of-the-art FU methods extend traditional FL frameworks by leveraging stored historical updates, enabling more efficient unlearning than training from scratch. However, the use of stored updates introduces significant privacy risks. Adversaries with access to these updates can potentially reconstruct clients' local data, a well-known vulnerability in the privacy domain. While privacy-enhanced techniques exist, their applications to FU scenarios that balance unlearning efficiency with privacy protection remain underexplored. To address this gap, we propose FedADP, a method designed to achieve both efficiency and privacy preservation in FU. Our approach incorporates an adaptive differential privacy (DP) mechanism, carefully balancing privacy and unlearning performance through a novel budget allocation strategy tailored for FU. FedADP also employs a dual-layered selection process, focusing on global models with significant changes and client updates closely aligned with the global model, reducing storage and communication costs. Additionally, a novel calibration method is introduced to facilitate effective unlearning. Extensive experimental results demonstrate that FedADP effectively manages the trade-off between unlearning efficiency and privacy protection.
Abstract:Long text summarization, gradually being essential for efficiently processing large volumes of information, stays challenging for Large Language Models (LLMs) such as GPT and LLaMA families because of the insufficient open-sourced training datasets and the high requirement of contextual details dealing. To address the issue, we design a novel zero-shot transfer learning framework, abbreviated as T3, to iteratively training a baseline LLM on an assistant task for the target task, where the former should own richer data resources and share structural or semantic similarity with the latter. In practice, T3 is approached to deal with the long text summarization task by utilizing question answering as the assistant task, and further validated its effectiveness on the BBC summary, NarraSum, FairytaleQA, and NLQuAD datasets, with up to nearly 14% improvement in ROUGE, 35% improvement in BLEU, and 16% improvement in Factscore compared to three baseline LLMs, demonstrating its potential for more assistant-target task combinations.