Abstract:Automated hyperparameter search in machine learning, especially for deep learning models, is typically formulated as a bilevel optimization problem, with hyperparameter values determined by the upper level and the model learning achieved by the lower-level problem. Most of the existing bilevel optimization solutions either assume the uniqueness of the optimal training model given hyperparameters or adopt an optimistic view when the non-uniqueness issue emerges. Potential model uncertainty may arise when training complex models with limited data, especially when the uniqueness assumption is violated. Thus, the suitability of the optimistic view underlying current bilevel hyperparameter optimization solutions is questionable. In this paper, we propose pessimistic bilevel hyperparameter optimization to assure appropriate outer-level hyperparameters to better generalize the inner-level learned models, by explicitly incorporating potential uncertainty of the inner-level solution set. To solve the resulting computationally challenging pessimistic bilevel optimization problem, we develop a novel relaxation-based approximation method. It derives pessimistic solutions with more robust prediction models. In our empirical studies of automated hyperparameter search for binary linear classifiers, pessimistic solutions have demonstrated better prediction performances than optimistic counterparts when we have limited training data or perturbed testing data, showing the necessity of considering pessimistic solutions besides existing optimistic ones.
Abstract:Low-latency and high-precision vehicle localization plays a significant role in enhancing traffic safety and improving traffic management for intelligent transportation. However, in complex road environments, the low latency and high precision requirements could not always be fulfilled due to the high complexity of localization computation. To tackle this issue, we propose a road-aware localization mechanism in heterogeneous networks (HetNet) of the mobile communication system, which enables real-time acquisition of vehicular position information, including the vehicular current road, segment within the road, and coordinates. By employing this multi-scale localization approach, the computational complexity can be greatly reduced while ensuring accurate positioning. Specifically, to reduce positioning search complexity and ensure positioning precision, roads are partitioned into low-dimensional segments with unequal lengths by the proposed singular point (SP) segmentation method. To reduce feature-matching complexity, distinctive salient features (SFs) are extracted sparsely representing roads and segments, which can eliminate redundant features while maximizing the feature information gain. The Cram\'er-Rao Lower Bound (CRLB) of vehicle positioning errors is derived to verify the positioning accuracy improvement brought from the segment partition and SF extraction. Additionally, through SF matching by integrating the inclusion and adjacency position relationships, a multi-scale vehicle localization (MSVL) algorithm is proposed to identify vehicular road signal patterns and determine the real-time segment and coordinates. Simulation results show that the proposed multi-scale localization mechanism can achieve lower latency and high precision compared to the benchmark schemes.
Abstract:A hybrid physics-machine learning modeling framework is proposed for the surface vehicles' maneuvering motions to address the modeling capability and stability in the presence of environmental disturbances. From a deep learning perspective, the framework is based on a variant version of residual networks with additional feature extraction. Initially, an imperfect physical model is derived and identified to capture the fundamental hydrodynamic characteristics of marine vehicles. This model is then integrated with a feedforward network through a residual block. Additionally, feature extraction from trigonometric transformations is employed in the machine learning component to account for the periodic influence of currents and waves. The proposed method is evaluated using real navigational data from the 'JH7500' unmanned surface vehicle. The results demonstrate the robust generalizability and accurate long-term prediction capabilities of the nonlinear dynamic model in specific environmental conditions. This approach has the potential to be extended and applied to develop a comprehensive high-fidelity simulator.
Abstract:In this paper, we tackle the problem of how to build and benchmark a large motion model (LMM). The ultimate goal of LMM is to serve as a foundation model for versatile motion-related tasks, e.g., human motion generation, with interpretability and generalizability. Though advanced, recent LMM-related works are still limited by small-scale motion data and costly text descriptions. Besides, previous motion benchmarks primarily focus on pure body movements, neglecting the ubiquitous motions in context, i.e., humans interacting with humans, objects, and scenes. To address these limitations, we consolidate large-scale video action datasets as knowledge banks to build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions. Different from laboratory-captured motions, in-the-wild human-centric videos contain abundant motions in context. To facilitate better motion text alignment, we also meticulously devise a motion caption generation algorithm to automatically produce rule-based, unbiased, and disentangled text descriptions via the kinematic characteristics for each motion. Extensive experiments show that our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding. Video motions together with the rule-based text annotations could serve as an efficient alternative for larger LMMs. Our dataset, codes, and benchmark will be publicly available at https://github.com/liangxuy/MotionBank.
Abstract:Long text summarization, gradually being essential for efficiently processing large volumes of information, stays challenging for Large Language Models (LLMs) such as GPT and LLaMA families because of the insufficient open-sourced training datasets and the high requirement of contextual details dealing. To address the issue, we design a novel zero-shot transfer learning framework, abbreviated as T3, to iteratively training a baseline LLM on an assistant task for the target task, where the former should own richer data resources and share structural or semantic similarity with the latter. In practice, T3 is approached to deal with the long text summarization task by utilizing question answering as the assistant task, and further validated its effectiveness on the BBC summary, NarraSum, FairytaleQA, and NLQuAD datasets, with up to nearly 14% improvement in ROUGE, 35% improvement in BLEU, and 16% improvement in Factscore compared to three baseline LLMs, demonstrating its potential for more assistant-target task combinations.
Abstract:Infrared ship detection (IRSD) has received increasing attention in recent years due to the robustness of infrared images to adverse weather. However, a large number of false alarms may occur in complex scenes. To address these challenges, we propose the Scene Semantic Prior-Assisted Multi-Task Perception Network (SMPISD-MTPNet), which includes three stages: scene semantic extraction, deep feature extraction, and prediction. In the scene semantic extraction stage, we employ a Scene Semantic Extractor (SSE) to guide the network by the features extracted based on expert knowledge. In the deep feature extraction stage, a backbone network is employed to extract deep features. These features are subsequently integrated by a fusion network, enhancing the detection capabilities across targets of varying sizes. In the prediction stage, we utilize the Multi-Task Perception Module, which includes the Gradient-based Module and the Scene Segmentation Module, enabling precise detection of small and dim targets within complex scenes. For the training process, we introduce the Soft Fine-tuning training strategy to suppress the distortion caused by data augmentation. Besides, due to the lack of a publicly available dataset labelled for scenes, we introduce the Infrared Ship Dataset with Scene Segmentation (IRSDSS). Finally, we evaluate the network and compare it with state-of-the-art (SOTA) methods, indicating that SMPISD-MTPNet outperforms existing approaches. The source code and dataset for this research can be accessed at https://github.com/greekinRoma/KMNDNet.
Abstract:Generating human-object interactions (HOIs) is critical with the tremendous advances of digital avatars. Existing datasets are typically limited to humans interacting with a single object while neglecting the ubiquitous manipulation of multiple objects. Thus, we propose HIMO, a large-scale MoCap dataset of full-body human interacting with multiple objects, containing 3.3K 4D HOI sequences and 4.08M 3D HOI frames. We also annotate HIMO with detailed textual descriptions and temporal segments, benchmarking two novel tasks of HOI synthesis conditioned on either the whole text prompt or the segmented text prompts as fine-grained timeline control. To address these novel tasks, we propose a dual-branch conditional diffusion model with a mutual interaction module for HOI synthesis. Besides, an auto-regressive generation pipeline is also designed to obtain smooth transitions between HOI segments. Experimental results demonstrate the generalization ability to unseen object geometries and temporal compositions.
Abstract:The SuperCLUE-Fin (SC-Fin) benchmark is a pioneering evaluation framework tailored for Chinese-native financial large language models (FLMs). It assesses FLMs across six financial application domains and twenty-five specialized tasks, encompassing theoretical knowledge and practical applications such as compliance, risk management, and investment analysis. Using multi-turn, open-ended conversations that mimic real-life scenarios, SC-Fin measures models on a range of criteria, including accurate financial understanding, logical reasoning, clarity, computational efficiency, business acumen, risk perception, and compliance with Chinese regulations. In a rigorous evaluation involving over a thousand questions, SC-Fin identifies a performance hierarchy where domestic models like GLM-4 and MoonShot-v1-128k outperform others with an A-grade, highlighting the potential for further development in transforming theoretical knowledge into pragmatic financial solutions. This benchmark serves as a critical tool for refining FLMs in the Chinese context, directing improvements in financial knowledge databases, standardizing financial interpretations, and promoting models that prioritize compliance, risk management, and secure practices. We create a contextually relevant and comprehensive benchmark that drives the development of AI in the Chinese financial sector. SC-Fin facilitates the advancement and responsible deployment of FLMs, offering valuable insights for enhancing model performance and usability for both individual and institutional users in the Chinese market..~\footnote{Our benchmark can be found at \url{https://www.CLUEbenchmarks.com}}.
Abstract:Traditional spectral imaging methods are constrained by the time-consuming scanning process, limiting the application in dynamic scenarios. One-shot spectral imaging based on reconstruction has been a hot research topic recently and the primary challenges still lie in both efficient fabrication techniques suitable for mass production and the high-speed, high-accuracy reconstruction algorithm for real-time spectral imaging. In this study, we introduce an innovative on-chip real-time hyperspectral imager that leverages nanophotonic film spectral encoders and a Massively Parallel Network (MP-Net), featuring a 4 * 4 array of compact, all-dielectric film units for the micro-spectrometers. Each curved nanophotonic film unit uniquely modulates incident light across the underlying 3 * 3 CMOS image sensor (CIS) pixels, enabling a high spatial resolution equivalent to the full CMOS resolution. The implementation of MP-Net, specially designed to address variability in transmittance and manufacturing errors such as misalignment and non-uniformities in thin film deposition, can greatly increase the structural tolerance of the device and reduce the preparation requirement, further simplifying the manufacturing process. Tested in varied environments on both static and moving objects, the real-time hyperspectral imager demonstrates the robustness and high-fidelity spatial-spectral data capabilities across diverse scenarios. This on-chip hyperspectral imager represents a significant advancement in real-time, high-resolution spectral imaging, offering a versatile solution for applications ranging from environmental monitoring, remote sensing to consumer electronics.
Abstract:Humans constantly interact with their surrounding environments. Current human-centric generative models mainly focus on synthesizing humans plausibly interacting with static scenes and objects, while the dynamic human action-reaction synthesis for ubiquitous causal human-human interactions is less explored. Human-human interactions can be regarded as asymmetric with actors and reactors in atomic interaction periods. In this paper, we comprehensively analyze the asymmetric, dynamic, synchronous, and detailed nature of human-human interactions and propose the first multi-setting human action-reaction synthesis benchmark to generate human reactions conditioned on given human actions. To begin with, we propose to annotate the actor-reactor order of the interaction sequences for the NTU120, InterHuman, and Chi3D datasets. Based on them, a diffusion-based generative model with a Transformer decoder architecture called ReGenNet together with an explicit distance-based interaction loss is proposed to predict human reactions in an online manner, where the future states of actors are unavailable to reactors. Quantitative and qualitative results show that our method can generate instant and plausible human reactions compared to the baselines, and can generalize to unseen actor motions and viewpoint changes.