Abstract:This paper tackles the challenge of automatically performing realistic surgical simulations from readily available surgical videos. Recent efforts have successfully integrated physically grounded dynamics within 3D Gaussians to perform high-fidelity simulations in well-reconstructed simulation environments from static scenes. However, they struggle with the geometric inconsistency in reconstructing simulation environments and unrealistic physical deformations in simulations of soft tissues when it comes to dynamic and complex surgical processes. In this paper, we propose SurgiSim, a novel automatic simulation system to overcome these limitations. To build a surgical simulation environment, we maintain a canonical 3D scene composed of 3D Gaussians coupled with a deformation field to represent a dynamic surgical scene. This process involves a multi-stage optimization with trajectory and anisotropic regularization, enhancing the geometry consistency of the canonical scene, which serves as the simulation environment. To achieve realistic physical simulations in this environment, we implement a Visco-Elastic deformation model based on the Maxwell model, effectively restoring the complex deformations of tissues. Additionally, we infer the physical parameters of tissues by minimizing the discrepancies between the input video and simulation results guided by estimated tissue motion, ensuring realistic simulation outcomes. Experiments on various surgical scenarios and interactions demonstrate SurgiSim's ability to perform realistic simulation of soft tissues among surgical procedures, showing its enormous potential for enhancing surgical training, planning, and robotic surgery systems. The project page is at https://namaenashibot.github.io/SurgiSim/.
Abstract:Diffusion models have demonstrated impressive performance in face restoration. Yet, their multi-step inference process remains computationally intensive, limiting their applicability in real-world scenarios. Moreover, existing methods often struggle to generate face images that are harmonious, realistic, and consistent with the subject's identity. In this work, we propose OSDFace, a novel one-step diffusion model for face restoration. Specifically, we propose a visual representation embedder (VRE) to better capture prior information and understand the input face. In VRE, low-quality faces are processed by a visual tokenizer and subsequently embedded with a vector-quantized dictionary to generate visual prompts. Additionally, we incorporate a facial identity loss derived from face recognition to further ensure identity consistency. We further employ a generative adversarial network (GAN) as a guidance model to encourage distribution alignment between the restored face and the ground truth. Experimental results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics, generating high-fidelity, natural face images with high identity consistency. The code and model will be released at https://github.com/jkwang28/OSDFace.
Abstract:Organic synthesis stands as a cornerstone of chemical industry. The development of robust machine learning models to support tasks associated with organic reactions is of significant interest. However, current methods rely on hand-crafted features or direct adaptations of model architectures from other domains, which lacks feasibility as data scales increase or overlook the rich chemical information inherent in reactions. To address these issues, this paper introduces {\modelname}, a novel chemical reaction representation learning model tailored for a variety of organic-reaction-related tasks. By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction, thereby enhancing the comprehension of the reaction mechanism. We have designed an adapter structure to incorporate reaction conditions into the chemical reaction representation, allowing the model to handle diverse reaction conditions and adapt to various datasets and downstream tasks, e.g., reaction performance prediction. Additionally, we introduce a reaction-center aware attention mechanism that enables the model to concentrate on key functional groups, thereby generating potent representations for chemical reactions. Our model has been evaluated on a range of downstream tasks, including reaction condition prediction, reaction yield prediction, and reaction selectivity prediction. Experimental results indicate that our model markedly outperforms existing chemical reaction representation learning architectures across all tasks. Notably, our model significantly outperforms all the baselines with up to 25\% (top-1) and 16\% (top-10) increased accuracy over the strongest baseline on USPTO\_CONDITION dataset for reaction condition prediction. We plan to open-source the code contingent upon the acceptance of the paper.
Abstract:Diffusion-based image super-resolution (SR) models have shown superior performance at the cost of multiple denoising steps. However, even though the denoising step has been reduced to one, they require high computational costs and storage requirements, making it difficult for deployment on hardware devices. To address these issues, we propose a novel post-training quantization approach with adaptive scale in one-step diffusion (OSD) image SR, PassionSR. First, we simplify OSD model to two core components, UNet and Variational Autoencoder (VAE) by removing the CLIPEncoder. Secondly, we propose Learnable Boundary Quantizer (LBQ) and Learnable Equivalent Transformation (LET) to optimize the quantization process and manipulate activation distributions for better quantization. Finally, we design a Distributed Quantization Calibration (DQC) strategy that stabilizes the training of quantized parameters for rapid convergence. Comprehensive experiments demonstrate that PassionSR with 8-bit and 6-bit obtains comparable visual results with full-precision model. Moreover, our PassionSR achieves significant advantages over recent leading low-bit quantization methods for image SR. Our code will be at https://github.com/libozhu03/PassionSR.
Abstract:Video diffusion models have exhibited tremendous progress in various video generation tasks. However, existing models struggle to capture latent physical knowledge, failing to infer physical phenomena that are challenging to articulate with natural language. Generating videos following the fundamental physical laws is still an opening challenge. To address this challenge, we propose a novel method to teach video diffusion models with latent physical phenomenon knowledge, enabling the accurate generation of physically informed phenomena. Specifically, we first pretrain Masked Autoencoders (MAE) to reconstruct the physical phenomena, resulting in output embeddings that encapsulate latent physical phenomenon knowledge. Leveraging these embeddings, we could generate the pseudo-language prompt features based on the aligned spatial relationships between CLIP vision and language encoders. Particularly, given that diffusion models typically use CLIP's language encoder for text prompt embeddings, our approach integrates the CLIP visual features informed by latent physical knowledge into a quaternion hidden space. This enables the modeling of spatial relationships to produce physical knowledge-informed pseudo-language prompts. By incorporating these prompt features and fine-tuning the video diffusion model in a parameter-efficient manner, the physical knowledge-informed videos are successfully generated. We validate our method extensively through both numerical simulations and real-world observations of physical phenomena, demonstrating its remarkable performance across diverse scenarios.
Abstract:In this paper, we tackle the problem of how to build and benchmark a large motion model (LMM). The ultimate goal of LMM is to serve as a foundation model for versatile motion-related tasks, e.g., human motion generation, with interpretability and generalizability. Though advanced, recent LMM-related works are still limited by small-scale motion data and costly text descriptions. Besides, previous motion benchmarks primarily focus on pure body movements, neglecting the ubiquitous motions in context, i.e., humans interacting with humans, objects, and scenes. To address these limitations, we consolidate large-scale video action datasets as knowledge banks to build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions. Different from laboratory-captured motions, in-the-wild human-centric videos contain abundant motions in context. To facilitate better motion text alignment, we also meticulously devise a motion caption generation algorithm to automatically produce rule-based, unbiased, and disentangled text descriptions via the kinematic characteristics for each motion. Extensive experiments show that our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding. Video motions together with the rule-based text annotations could serve as an efficient alternative for larger LMMs. Our dataset, codes, and benchmark will be publicly available at https://github.com/liangxuy/MotionBank.
Abstract:While humans effortlessly discern intrinsic dynamics and adapt to new scenarios, modern AI systems often struggle. Current methods for visual grounding of dynamics either use pure neural-network-based simulators (black box), which may violate physical laws, or traditional physical simulators (white box), which rely on expert-defined equations that may not fully capture actual dynamics. We propose the Neural Material Adaptor (NeuMA), which integrates existing physical laws with learned corrections, facilitating accurate learning of actual dynamics while maintaining the generalizability and interpretability of physical priors. Additionally, we propose Particle-GS, a particle-driven 3D Gaussian Splatting variant that bridges simulation and observed images, allowing back-propagate image gradients to optimize the simulator. Comprehensive experiments on various dynamics in terms of grounded particle accuracy, dynamic rendering quality, and generalization ability demonstrate that NeuMA can accurately capture intrinsic dynamics.
Abstract:In the realm of computational physics, an enduring topic is the numerical solutions to partial differential equations (PDEs). Recently, the attention of researchers has shifted towards Neural Operator methods, renowned for their capability to approximate ``operators'' -- mappings from functions to functions. Despite the universal approximation theorem within neural operators, ensuring error bounds often requires employing numerous Fourier layers. However, what about lightweight models? In response to this question, we introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis. To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers, enhancing their ability to handle sum-of-products structures inherent in many physical systems. Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets. Furthermore, by analyzing Fourier components' weights, we can symbolically discern the physical significance of each term. This sheds light on the opaque nature of neural networks, unveiling underlying physical principles.
Abstract:Precipitation nowcasting plays a pivotal role in socioeconomic sectors, especially in severe convective weather warnings. Although notable progress has been achieved by approaches mining the spatiotemporal correlations with deep learning, these methods still suffer severe blurriness as the lead time increases, which hampers accurate predictions for extreme precipitation. To alleviate blurriness, researchers explore generative methods conditioned on blurry predictions. However, the pairs of blurry predictions and corresponding ground truth need to be generated in advance, making the training pipeline cumbersome and limiting the generality of generative models within blur modes that appear in training data. By rethinking the blurriness in precipitation nowcasting as a blur kernel acting on predictions, we propose an unsupervised postprocessing method to eliminate the blurriness without the requirement of training with the pairs of blurry predictions and corresponding ground truth. Specifically, we utilize blurry predictions to guide the generation process of a pre-trained unconditional denoising diffusion probabilistic model (DDPM) to obtain high-fidelity predictions with eliminated blurriness. A zero-shot blur kernel estimation mechanism and an auto-scale denoise guidance strategy are introduced to adapt the unconditional DDPM to any blurriness modes varying from datasets and lead times in precipitation nowcasting. Extensive experiments are conducted on 7 precipitation radar datasets, demonstrating the generality and superiority of our method.
Abstract:3D face editing is a significant task in multimedia, aimed at the manipulation of 3D face models across various control signals. The success of 3D-aware GAN provides expressive 3D models learned from 2D single-view images only, encouraging researchers to discover semantic editing directions in its latent space. However, previous methods face challenges in balancing quality, efficiency, and generalization. To solve the problem, we explore the possibility of introducing the strength of diffusion model into 3D-aware GANs. In this paper, we present Face Clan, a fast and text-general approach for generating and manipulating 3D faces based on arbitrary attribute descriptions. To achieve disentangled editing, we propose to diffuse on the latent space under a pair of opposite prompts to estimate the mask indicating the region of interest on latent codes. Based on the mask, we then apply denoising to the masked latent codes to reveal the editing direction. Our method offers a precisely controllable manipulation method, allowing users to intuitively customize regions of interest with the text description. Experiments demonstrate the effectiveness and generalization of our Face Clan for various pre-trained GANs. It offers an intuitive and wide application for text-guided face editing that contributes to the landscape of multimedia content creation.