Abstract:Physically Based Rendering (PBR) materials play a crucial role in modern graphics, enabling photorealistic rendering across diverse environment maps. Developing an effective and efficient algorithm that is capable of automatically generating high-quality PBR materials rather than RGB texture for 3D meshes can significantly streamline the 3D content creation. Most existing methods leverage pre-trained 2D diffusion models for multi-view image synthesis, which often leads to severe inconsistency between the generated textures and input 3D meshes. This paper presents TexGaussian, a novel method that uses octant-aligned 3D Gaussian Splatting for rapid PBR material generation. Specifically, we place each 3D Gaussian on the finest leaf node of the octree built from the input 3D mesh to render the multiview images not only for the albedo map but also for roughness and metallic. Moreover, our model is trained in a regression manner instead of diffusion denoising, capable of generating the PBR material for a 3D mesh in a single feed-forward process. Extensive experiments on publicly available benchmarks demonstrate that our method synthesizes more visually pleasing PBR materials and runs faster than previous methods in both unconditional and text-conditional scenarios, which exhibit better consistency with the given geometry. Our code and trained models are available at https://3d-aigc.github.io/TexGaussian.
Abstract:Diffusion models have demonstrated impressive performance in face restoration. Yet, their multi-step inference process remains computationally intensive, limiting their applicability in real-world scenarios. Moreover, existing methods often struggle to generate face images that are harmonious, realistic, and consistent with the subject's identity. In this work, we propose OSDFace, a novel one-step diffusion model for face restoration. Specifically, we propose a visual representation embedder (VRE) to better capture prior information and understand the input face. In VRE, low-quality faces are processed by a visual tokenizer and subsequently embedded with a vector-quantized dictionary to generate visual prompts. Additionally, we incorporate a facial identity loss derived from face recognition to further ensure identity consistency. We further employ a generative adversarial network (GAN) as a guidance model to encourage distribution alignment between the restored face and the ground truth. Experimental results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics, generating high-fidelity, natural face images with high identity consistency. The code and model will be released at https://github.com/jkwang28/OSDFace.
Abstract:Low Earth orbit (LEO) satellites, as a prominent technology in the 6G non-terrestrial network, offer both positioning and communication capabilities. While these two applications have each been extensively studied and have achieved substantial progress in recent years, the potential synergistic benefits of integrating them remain an underexplored yet promising avenue. This article comprehensively analyzes the integrated positioning and communication (IPAC) systems on LEO satellites. By leveraging the distinct characteristics of LEO satellites, we examine how communication systems can enhance positioning accuracy and, conversely, how positioning information can be exploited to improve communication efficiency. In particular, we present two case studies to illustrate the potential of such integration. Finally, several key open research challenges in the LEO-based IPAC systems are discussed.
Abstract:Deploying robots in open-world environments involves complex tasks characterized by long sequences and rich interactions, necessitating efficient transfer of robotic skills across diverse and complex scenarios. To address this challenge, we propose a skill library framework based on knowledge graphs, which endows robots with high-level skill awareness and spatial semantic understanding. The framework hierarchically organizes operational knowledge by constructing a "task graph" and a "scene graph" to represent task and scene semantic information, respectively. We introduce a "state graph" to facilitate interaction between high-level task planning and low-level scene information. Furthermore, we propose a hierarchical transfer framework for operational skills. At the task level, the framework integrates contextual learning and chain-of-thought prompting within a four-stage prompt paradigm, leveraging large language models' (LLMs) reasoning and generalization capabilities to achieve task-level subtask sequence transfer. At the motion level, an adaptive trajectory transfer method is developed using the A* algorithm and the skill library, enabling motion-level adaptive trajectory transfer. At the physical level, we introduce an adaptive contour extraction and posture perception method based on tactile perception. This method dynamically obtains high-precision contour and posture information from visual-tactile texture data and adjusts transferred skills, such as contact positions and postures, to ensure effectiveness in new environments. Experimental results validate the effectiveness of the proposed methods. Project website:https://github.com/MingchaoQi/skill_transfer
Abstract:Goodness-of-fit testing is often criticized for its lack of practical relevance; since ``all models are wrong'', the null hypothesis that the data conform to our model is ultimately always rejected when the sample size is large enough. Despite this, probabilistic models are still used extensively, raising the more pertinent question of whether the model is good enough for a specific task. This question can be formalized as a robust goodness-of-fit testing problem by asking whether the data were generated by a distribution corresponding to our model up to some mild perturbation. In this paper, we show that existing kernel goodness-of-fit tests are not robust according to common notions of robustness including qualitative and quantitative robustness. We also show that robust techniques based on tilted kernels from the parameter estimation literature are not sufficient for ensuring both types of robustness in the context of goodness-of-fit testing. We therefore propose the first robust kernel goodness-of-fit test which resolves this open problem using kernel Stein discrepancy balls, which encompass perturbation models such as Huber contamination models and density uncertainty bands.
Abstract:Due to the uncertainty of traffic participants' intentions, generating safe but not overly cautious behavior in interactive driving scenarios remains a formidable challenge for autonomous driving. In this paper, we address this issue by combining a deep learning-based trajectory prediction model with risk potential field-based motion planning. In order to comprehensively predict the possible future trajectories of other vehicles, we propose a target-region based trajectory prediction model(TRTP) which considers every region a vehicle may arrive in the future. After that, we construct a risk potential field at each future time step based on the prediction results of TRTP, and integrate risk value to the objective function of Model Predictive Contouring Control(MPCC). This enables the uncertainty of other vehicles to be taken into account during the planning process. Balancing between risk and progress along the reference path can achieve both driving safety and efficiency at the same time. We also demonstrate the security and effectiveness performance of our method in the CARLA simulator.
Abstract:Spiking neural networks (SNNs), inspired by the neural circuits of the brain, are promising in achieving high computational efficiency with biological fidelity. Nevertheless, it is quite difficult to optimize SNNs because the functional roles of their modelling components remain unclear. By designing and evaluating several variants of the classic model, we systematically investigate the functional roles of key modelling components, leakage, reset, and recurrence, in leaky integrate-and-fire (LIF) based SNNs. Through extensive experiments, we demonstrate how these components influence the accuracy, generalization, and robustness of SNNs. Specifically, we find that the leakage plays a crucial role in balancing memory retention and robustness, the reset mechanism is essential for uninterrupted temporal processing and computational efficiency, and the recurrence enriches the capability to model complex dynamics at a cost of robustness degradation. With these interesting observations, we provide optimization suggestions for enhancing the performance of SNNs in different scenarios. This work deepens the understanding of how SNNs work, which offers valuable guidance for the development of more effective and robust neuromorphic models.
Abstract:This paper presents TexRO, a novel method for generating delicate textures of a known 3D mesh by optimizing its UV texture. The key contributions are two-fold. We propose an optimal viewpoint selection strategy, that finds the most miniature set of viewpoints covering all the faces of a mesh. Our viewpoint selection strategy guarantees the completeness of a generated result. We propose a recursive optimization pipeline that optimizes a UV texture at increasing resolutions, with an adaptive denoising method that re-uses existing textures for new texture generation. Through extensive experimentation, we demonstrate the superior performance of TexRO in terms of texture quality, detail preservation, visual consistency, and, notably runtime speed, outperforming other current methods. The broad applicability of TexRO is further confirmed through its successful use on diverse 3D models.
Abstract:Low Earth orbit (LEO) satellites and reconfigurable intelligent surfaces (RISs) have recently drawn significant attention as two transformative technologies, and the synergy between them emerges as a promising paradigm for providing cross-environment communication and positioning services. This paper investigates an integrated terrestrial and non-terrestrial wireless network that leverages LEO satellites and RISs to achieve simultaneous tracking of the 3D position, 3D velocity, and 3D orientation of user equipment (UE). To address inherent challenges including nonlinear observation function, constrained UE state, and unknown observation statistics, we develop a Riemannian manifold-based unscented Kalman filter (UKF) method. This method propagates statistics over nonlinear functions using generated sigma points and maintains state constraints through projection onto the defined manifold space. Additionally, by employing Fisher information matrices (FIMs) of the sigma points, a belief assignment principle is proposed to approximate the unknown observation covariance matrix, thereby ensuring accurate measurement updates in the UKF procedure. Numerical results demonstrate a substantial enhancement in tracking accuracy facilitated by RIS integration, despite urban signal reception challenges from LEO satellites. In addition, extensive simulations underscore the superior performance of the proposed tracking method and FIM-based belief assignment over the adopted benchmarks. Furthermore, the robustness of the proposed UKF is verified across various uncertainty levels.
Abstract:In the field of urban planning, general-purpose large language models often struggle to meet the specific needs of planners. Tasks like generating urban planning texts, retrieving related information, and evaluating planning documents pose unique challenges. To enhance the efficiency of urban professionals and overcome these obstacles, we introduce PlanGPT, the first specialized Large Language Model tailored for urban and spatial planning. Developed through collaborative efforts with institutions like the Chinese Academy of Urban Planning, PlanGPT leverages a customized local database retrieval framework, domain-specific fine-tuning of base models, and advanced tooling capabilities. Empirical tests demonstrate that PlanGPT has achieved advanced performance, delivering responses of superior quality precisely tailored to the intricacies of urban planning.