Abstract:Diffusion models have demonstrated impressive performance in face restoration. Yet, their multi-step inference process remains computationally intensive, limiting their applicability in real-world scenarios. Moreover, existing methods often struggle to generate face images that are harmonious, realistic, and consistent with the subject's identity. In this work, we propose OSDFace, a novel one-step diffusion model for face restoration. Specifically, we propose a visual representation embedder (VRE) to better capture prior information and understand the input face. In VRE, low-quality faces are processed by a visual tokenizer and subsequently embedded with a vector-quantized dictionary to generate visual prompts. Additionally, we incorporate a facial identity loss derived from face recognition to further ensure identity consistency. We further employ a generative adversarial network (GAN) as a guidance model to encourage distribution alignment between the restored face and the ground truth. Experimental results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics, generating high-fidelity, natural face images with high identity consistency. The code and model will be released at https://github.com/jkwang28/OSDFace.
Abstract:For the diagnosis of diabetes retinopathy (DR) images, this paper proposes a classification method based on artificial intelligence. The core lies in a new data augmentation method, GreenBen, which first extracts the green channel grayscale image from the retinal image and then performs Ben enhancement. Considering that diabetes macular edema (DME) is a complication closely related to DR, this paper constructs a joint classification framework of DR and DME based on multi task learning and attention module, and uses GreenBen to enhance its data to reduce the difference of DR images and improve the accuracy of model classification. We conducted extensive experiments on three publicly available datasets, and our method achieved the best results. For GreenBen, whether based on the ResNet50 network or the Swin Transformer network, whether for individual classification or joint DME classification, compared with other data augmentation methods, GreenBen achieved stable and significant improvements in DR classification results, with an accuracy increase of 10%.
Abstract:Medical abstractive summarization faces the challenge of balancing faithfulness and informativeness. Current methods often sacrifice key information for faithfulness or introduce confabulations when prioritizing informativeness. While recent advancements in techniques like in-context learning (ICL) and fine-tuning have improved medical summarization, they often overlook crucial aspects such as faithfulness and informativeness without considering advanced methods like model reasoning and self-improvement. Moreover, the field lacks a unified benchmark, hindering systematic evaluation due to varied metrics and datasets. This paper addresses these gaps by presenting a comprehensive benchmark of six advanced abstractive summarization methods across three diverse datasets using five standardized metrics. Building on these findings, we propose uMedSum, a modular hybrid summarization framework that introduces novel approaches for sequential confabulation removal followed by key missing information addition, ensuring both faithfulness and informativeness. Our work improves upon previous GPT-4-based state-of-the-art (SOTA) medical summarization methods, significantly outperforming them in both quantitative metrics and qualitative domain expert evaluations. Notably, we achieve an average relative performance improvement of 11.8% in reference-free metrics over the previous SOTA. Doctors prefer uMedSum's summaries 6 times more than previous SOTA in difficult cases where there are chances of confabulations or missing information. These results highlight uMedSum's effectiveness and generalizability across various datasets and metrics, marking a significant advancement in medical summarization.
Abstract:Light fields (LFs), conducive to comprehensive scene radiance recorded across angular dimensions, find wide applications in 3D reconstruction, virtual reality, and computational photography.However, the LF acquisition is inevitably time-consuming and resource-intensive due to the mainstream acquisition strategy involving manual capture or laborious software synthesis.Given such a challenge, we introduce LFdiff, a straightforward yet effective diffusion-based generative framework tailored for LF synthesis, which adopts only a single RGB image as input.LFdiff leverages disparity estimated by a monocular depth estimation network and incorporates two distinctive components: a novel condition scheme and a noise estimation network tailored for LF data.Specifically, we design a position-aware warping condition scheme, enhancing inter-view geometry learning via a robust conditional signal.We then propose DistgUnet, a disentanglement-based noise estimation network, to harness comprehensive LF representations.Extensive experiments demonstrate that LFdiff excels in synthesizing visually pleasing and disparity-controllable light fields with enhanced generalization capability.Additionally, comprehensive results affirm the broad applicability of the generated LF data, spanning applications like LF super-resolution and refocusing.
Abstract:Deep learning has opened up new possibilities for light field super-resolution (SR), but existing methods trained on synthetic datasets with simple degradations (e.g., bicubic downsampling) suffer from poor performance when applied to complex real-world scenarios. To address this problem, we introduce LytroZoom, the first real-world light field SR dataset capturing paired low- and high-resolution light fields of diverse indoor and outdoor scenes using a Lytro ILLUM camera. Additionally, we propose the Omni-Frequency Projection Network (OFPNet), which decomposes the omni-frequency components and iteratively enhances them through frequency projection operations to address spatially variant degradation processes present in all frequency components. Experiments demonstrate that models trained on LytroZoom outperform those trained on synthetic datasets and are generalizable to diverse content and devices. Quantitative and qualitative evaluations verify the superiority of OFPNet. We believe this work will inspire future research in real-world light field SR.
Abstract:Privacy protection raises great attention on both legal levels and user awareness. To protect user privacy, countries enact laws and regulations requiring software privacy policies to regulate their behavior. However, privacy policies are written in natural languages with many legal terms and software jargon that prevent users from understanding and even reading them. It is desirable to use NLP techniques to analyze privacy policies for helping users understand them. Furthermore, existing datasets ignore law requirements and are limited to English. In this paper, we construct the first Chinese privacy policy dataset, namely CA4P-483, to facilitate the sequence labeling tasks and regulation compliance identification between privacy policies and software. Our dataset includes 483 Chinese Android application privacy policies, over 11K sentences, and 52K fine-grained annotations. We evaluate families of robust and representative baseline models on our dataset. Based on baseline performance, we provide findings and potential research directions on our dataset. Finally, we investigate the potential applications of CA4P-483 combing regulation requirements and program analysis.
Abstract:Click-through rate (CTR) prediction is one of the fundamental tasks for e-commerce search engines. As search becomes more personalized, it is necessary to capture the user interest from rich behavior data. Existing user behavior modeling algorithms develop different attention mechanisms to emphasize query-relevant behaviors and suppress irrelevant ones. Despite being extensively studied, these attentions still suffer from two limitations. First, conventional attentions mostly limit the attention field only to a single user's behaviors, which is not suitable in e-commerce where users often hunt for new demands that are irrelevant to any historical behaviors. Second, these attentions are usually biased towards frequent behaviors, which is unreasonable since high frequency does not necessarily indicate great importance. To tackle the two limitations, we propose a novel attention mechanism, termed Kalman Filtering Attention (KFAtt), that considers the weighted pooling in attention as a maximum a posteriori (MAP) estimation. By incorporating a priori, KFAtt resorts to global statistics when few user behaviors are relevant. Moreover, a frequency capping mechanism is incorporated to correct the bias towards frequent behaviors. Offline experiments on both benchmark and a 10 billion scale real production dataset, together with an Online A/B test, show that KFAtt outperforms all compared state-of-the-arts. KFAtt has been deployed in the ranking system of a leading e commerce website, serving the main traffic of hundreds of millions of active users everyday.