Abstract:Deep learning-based drug-target interaction (DTI) prediction methods have demonstrated strong performance; however, real-world applicability remains constrained by limited data diversity and modeling complexity. To address these challenges, we propose SCOPE-DTI, a unified framework combining a large-scale, balanced semi-inductive human DTI dataset with advanced deep learning modeling. Constructed from 13 public repositories, the SCOPE dataset expands data volume by up to 100-fold compared to common benchmarks such as the Human dataset. The SCOPE model integrates three-dimensional protein and compound representations, graph neural networks, and bilinear attention mechanisms to effectively capture cross domain interaction patterns, significantly outperforming state-of-the-art methods across various DTI prediction tasks. Additionally, SCOPE-DTI provides a user-friendly interface and database. We further validate its effectiveness by experimentally identifying anticancer targets of Ginsenoside Rh1. By offering comprehensive data, advanced modeling, and accessible tools, SCOPE-DTI accelerates drug discovery research.
Abstract:Existing camera motion-controlled video generation methods face computational bottlenecks in fine-tuning and inference. This paper proposes LightMotion, a light and tuning-free method for simulating camera motion in video generation. Operating in the latent space, it eliminates additional fine-tuning, inpainting, and depth estimation, making it more streamlined than existing methods. The endeavors of this paper comprise: (i) The latent space permutation operation effectively simulates various camera motions like panning, zooming, and rotation. (ii) The latent space resampling strategy combines background-aware sampling and cross-frame alignment to accurately fill new perspectives while maintaining coherence across frames. (iii) Our in-depth analysis shows that the permutation and resampling cause an SNR shift in latent space, leading to poor-quality generation. To address this, we propose latent space correction, which reintroduces noise during denoising to mitigate SNR shift and enhance video generation quality. Exhaustive experiments show that our LightMotion outperforms existing methods, both quantitatively and qualitatively.
Abstract:Traditional psychological experiments utilizing naturalistic stimuli face challenges in manual annotation and ecological validity. To address this, we introduce a novel paradigm leveraging multimodal large language models (LLMs) as proxies to extract rich semantic information from naturalistic images through a Visual Question Answering (VQA) strategy for analyzing human visual semantic representation. LLM-derived representations successfully predict established neural activity patterns measured by fMRI (e.g., faces, buildings), validating its feasibility and revealing hierarchical semantic organization across cortical regions. A brain semantic network constructed from LLM-derived representations identifies meaningful clusters reflecting functional and contextual associations. This innovative methodology offers a powerful solution for investigating brain semantic organization with naturalistic stimuli, overcoming limitations of traditional annotation methods and paving the way for more ecologically valid explorations of human cognition.
Abstract:We introduce FathomGPT, an open source system for the interactive investigation of ocean science data via a natural language interface. FathomGPT was developed in close collaboration with marine scientists to enable researchers to explore and analyze the FathomNet image database. FathomGPT provides a custom information retrieval pipeline that leverages OpenAI's large language models to enable: the creation of complex queries to retrieve images, taxonomic information, and scientific measurements; mapping common names and morphological features to scientific names; generating interactive charts on demand; and searching by image or specified patterns within an image. In designing FathomGPT, particular emphasis was placed on enhancing the user's experience by facilitating free-form exploration and optimizing response times. We present an architectural overview and implementation details of FathomGPT, along with a series of ablation studies that demonstrate the effectiveness of our approach to name resolution, fine tuning, and prompt modification. We also present usage scenarios of interactive data exploration sessions and document feedback from ocean scientists and machine learning experts.
Abstract:This paper introduces EasyInv, an easy yet novel approach that significantly advances the field of DDIM Inversion by addressing the inherent inefficiencies and performance limitations of traditional iterative optimization methods. At the core of our EasyInv is a refined strategy for approximating inversion noise, which is pivotal for enhancing the accuracy and reliability of the inversion process. By prioritizing the initial latent state, which encapsulates rich information about the original images, EasyInv steers clear of the iterative refinement of noise items. Instead, we introduce a methodical aggregation of the latent state from the preceding time step with the current state, effectively increasing the influence of the initial latent state and mitigating the impact of noise. We illustrate that EasyInv is capable of delivering results that are either on par with or exceed those of the conventional DDIM Inversion approach, especially under conditions where the model's precision is limited or computational resources are scarce. Concurrently, our EasyInv offers an approximate threefold enhancement regarding inference efficiency over off-the-shelf iterative optimization techniques.
Abstract:We introduce ObjectAdd, a training-free diffusion modification method to add user-expected objects into user-specified area. The motive of ObjectAdd stems from: first, describing everything in one prompt can be difficult, and second, users often need to add objects into the generated image. To accommodate with real world, our ObjectAdd maintains accurate image consistency after adding objects with technical innovations in: (1) embedding-level concatenation to ensure correct text embedding coalesce; (2) object-driven layout control with latent and attention injection to ensure objects accessing user-specified area; (3) prompted image inpainting in an attention refocusing & object expansion fashion to ensure rest of the image stays the same. With a text-prompted image, our ObjectAdd allows users to specify a box and an object, and achieves: (1) adding object inside the box area; (2) exact content outside the box area; (3) flawless fusion between the two areas
Abstract:Vertebrae identification in arbitrary fields-of-view plays a crucial role in diagnosing spine disease. Most spine CT contain only local regions, such as the neck, chest, and abdomen. Therefore, identification should not depend on specific vertebrae or a particular number of vertebrae being visible. Existing methods at the spine-level are unable to meet this challenge. In this paper, we propose a three-stage method to address the challenges in 3D CT vertebrae identification at vertebrae-level. By sequentially performing the tasks of vertebrae localization, segmentation, and identification, the anatomical prior information of the vertebrae is effectively utilized throughout the process. Specifically, we introduce a dual-factor density clustering algorithm to acquire localization information for individual vertebra, thereby facilitating subsequent segmentation and identification processes. In addition, to tackle the issue of interclass similarity and intra-class variability, we pre-train our identification network by using a supervised contrastive learning method. To further optimize the identification results, we estimated the uncertainty of the classification network and utilized the message fusion module to combine the uncertainty scores, while aggregating global information about the spine. Our method achieves state-of-the-art results on the VerSe19 and VerSe20 challenge benchmarks. Additionally, our approach demonstrates outstanding generalization performance on an collected dataset containing a wide range of abnormal cases.
Abstract:Leveraging the advantage of satellite and terrestrial networks, the integrated satellite terrestrial networks (ISTNs) can help to achieve seamless global access and eliminate the digital divide. However, the dense deployment and frequent handover of satellites aggravate intra- and inter-system interference, resulting in a decrease in downlink sum rate. To address this issue, we propose a coordinated intra- and inter-system interference management algorithm for ISTN. This algorithm coordinates multidimensional interference through a joint design of inter-satellite handover and resource allocation method. On the one hand, we take inter-system interference between low earth orbit (LEO) and geostationary orbit (GEO) satellites as a constraint, and reduce interference to GEO satellite ground stations (GEO-GS) while ensuring system capacity through inter-satellite handover. On the other hand, satellite and terrestrial resource allocation schemes are designed based on the matching idea, and channel gain and interference to other channels are considered during the matching process to coordinate co-channel interference. In order to avoid too many unnecessary handovers, we consider handover scenarios related to service capabilities and service time to determine the optimal handover target satellite. Numerical results show that the gap between the results on the system sum rate obtained by the proposed method and the upper bound is reduced as the user density increases, and the handover frequency can be significantly reduced.
Abstract:In recent years deep learning methods have shown great superiority in compressed video quality enhancement tasks. Existing methods generally take the raw video as the ground truth and extract practical information from consecutive frames containing various artifacts. However, they do not fully exploit the valid information of compressed and raw videos to guide the quality enhancement for compressed videos. In this paper, we propose a unique Valid Information Guidance scheme (VIG) to enhance the quality of compressed videos by mining valid information from both compressed videos and raw videos. Specifically, we propose an efficient framework, Compressed Redundancy Filtering (CRF) network, to balance speed and enhancement. After removing the redundancy by filtering the information, CRF can use the valid information of the compressed video to reconstruct the texture. Furthermore, we propose a progressive Truth Guidance Distillation (TGD) strategy, which does not need to design additional teacher models and distillation loss functions. By only using the ground truth as input to guide the model to aggregate the correct spatio-temporal correspondence across the raw frames, TGD can significantly improve the enhancement effect without increasing the extra training cost. Extensive experiments show that our method achieves the state-of-the-art performance of compressed video quality enhancement in terms of accuracy and efficiency.
Abstract:Clothing changes and lack of data labels are both crucial challenges in person ReID. For the former challenge, people may occur multiple times at different locations wearing different clothing. However, most of the current person ReID research works focus on the benchmarks in which a person's clothing is kept the same all the time. For the last challenge, some researchers try to make model learn information from a labeled dataset as a source to an unlabeled dataset. Whereas purely unsupervised training is less used. In this paper, we aim to solve both problems at the same time. We design a novel unsupervised model, Sync-Person-Cloud ReID, to solve the unsupervised clothing change person ReID problem. We developer a purely unsupervised clothing change person ReID pipeline with person sync augmentation operation and same person feature restriction. The person sync augmentation is to supply additional same person resources. These same person's resources can be used as part supervised input by same person feature restriction. The extensive experiments on clothing change ReID datasets show the out-performance of our methods.