Abstract:Large Language Models (LLMs) demonstrate outstanding performance in their reservoir of knowledge and understanding capabilities, but they have also been shown to be prone to illegal or unethical reactions when subjected to jailbreak attacks. To ensure their responsible deployment in critical applications, it is crucial to understand the safety capabilities and vulnerabilities of LLMs. Previous works mainly focus on jailbreak in single-round dialogue, overlooking the potential jailbreak risks in multi-round dialogues, which are a vital way humans interact with and extract information from LLMs. Some studies have increasingly concentrated on the risks associated with jailbreak in multi-round dialogues. These efforts typically involve the use of manually crafted templates or prompt engineering techniques. However, due to the inherent complexity of multi-round dialogues, their jailbreak performance is limited. To solve this problem, we propose a novel multi-round dialogue jailbreaking agent, emphasizing the importance of stealthiness in identifying and mitigating potential threats to human values posed by LLMs. We propose a risk decomposition strategy that distributes risks across multiple rounds of queries and utilizes psychological strategies to enhance attack strength. Extensive experiments show that our proposed method surpasses other attack methods and achieves state-of-the-art attack success rate. We will make the corresponding code and dataset available for future research. The code will be released soon.
Abstract:Masked Image Modeling (MIM) has emerged as a pivotal approach for developing foundational visual models in the field of remote sensing (RS). However, current RS datasets are limited in volume and diversity, which significantly constrains the capacity of MIM methods to learn generalizable representations. In this study, we introduce \textbf{RS-4M}, a large-scale dataset designed to enable highly efficient MIM training on RS images. RS-4M comprises 4 million optical images encompassing abundant and fine-grained RS visual tasks, including object-level detection and pixel-level segmentation. Compared to natural images, RS images often contain massive redundant background pixels, which limits the training efficiency of the conventional MIM models. To address this, we propose an efficient MIM method, termed \textbf{SelectiveMAE}, which dynamically encodes and reconstructs a subset of patch tokens selected based on their semantic richness. SelectiveMAE roots in a progressive semantic token selection module, which evolves from reconstructing semantically analogical tokens to encoding complementary semantic dependencies. This approach transforms conventional MIM training into a progressive feature learning process, enabling SelectiveMAE to efficiently learn robust representations of RS images. Extensive experiments show that SelectiveMAE significantly boosts training efficiency by 2.2-2.7 times and enhances the classification, detection, and segmentation performance of the baseline MIM model.The dataset, source code, and trained models will be released.
Abstract:Fine-grained ship classification in remote sensing (RS-FGSC) poses a significant challenge due to the high similarity between classes and the limited availability of labeled data, limiting the effectiveness of traditional supervised classification methods. Recent advancements in large pre-trained Vision-Language Models (VLMs) have demonstrated impressive capabilities in few-shot or zero-shot learning, particularly in understanding image content. This study delves into harnessing the potential of VLMs to enhance classification accuracy for unseen ship categories, which holds considerable significance in scenarios with restricted data due to cost or privacy constraints. Directly fine-tuning VLMs for RS-FGSC often encounters the challenge of overfitting the seen classes, resulting in suboptimal generalization to unseen classes, which highlights the difficulty in differentiating complex backgrounds and capturing distinct ship features. To address these issues, we introduce a novel prompt tuning technique that employs a hierarchical, multi-granularity prompt design. Our approach integrates remote sensing ship priors through bias terms, learned from a small trainable network. This strategy enhances the model's generalization capabilities while improving its ability to discern intricate backgrounds and learn discriminative ship features. Furthermore, we contribute to the field by introducing a comprehensive dataset, FGSCM-52, significantly expanding existing datasets with more extensive data and detailed annotations for less common ship classes. Extensive experimental evaluations demonstrate the superiority of our proposed method over current state-of-the-art techniques. The source code will be made publicly available.