Abstract:Many machine learning applications deal with high dimensional data. To make computations feasible and learning more efficient, it is often desirable to reduce the dimensionality of the input variables by finding linear combinations of the predictors that can retain as much original information as possible in the relationship between the response and the original predictors. We propose a neural network based sufficient dimension reduction method that not only identifies the structural dimension effectively, but also estimates the central space well. It takes advantages of approximation capabilities of neural networks for functions in Barron classes and leads to reduced computation cost compared to other dimension reduction methods in the literature. Additionally, the framework can be extended to fit practical dimension reduction, making the methodology more applicable in practical settings.
Abstract:The emergence of large language models (LLMs) is a milestone in generative artificial intelligence, achieving significant success in text comprehension and generation tasks. Despite the tremendous success of LLMs in many downstream tasks, they suffer from severe hallucination problems, posing significant challenges to the practical applications of LLMs. Most of the works about LLMs' hallucinations focus on data quality. Self-attention is a core module in transformer-based LLMs, while its potential relationship with LLMs' hallucination has been hardly investigated. To fill this gap, we study this problem from a causal perspective. We propose a method to intervene in LLMs' self-attention layers and maintain their structures and sizes intact. Specifically, we disable different self-attention layers in several popular open-source LLMs and then compare their degrees of hallucination with the original ones. We evaluate the intervened LLMs on hallucination assessment benchmarks and conclude that disabling some specific self-attention layers in the front or tail of the LLMs can alleviate hallucination issues. The study paves a new way for understanding and mitigating LLMs' hallucinations.
Abstract:Most prior motion prediction endeavors in autonomous driving have inadequately encoded future scenarios, leading to predictions that may fail to accurately capture the diverse movements of agents (e.g., vehicles or pedestrians). To address this, we propose FutureNet, which explicitly integrates initially predicted trajectories into the future scenario and further encodes these future contexts to enhance subsequent forecasting. Additionally, most previous motion forecasting works have focused on predicting independent futures for each agent. However, safe and smooth autonomous driving requires accurately predicting the diverse future behaviors of numerous surrounding agents jointly in complex dynamic environments. Given that all agents occupy certain potential travel spaces and possess lane driving priority, we propose Lane Occupancy Field (LOF), a new representation with lane semantics for motion forecasting in autonomous driving. LOF can simultaneously capture the joint probability distribution of all road participants' future spatial-temporal positions. Due to the high compatibility between lane occupancy field prediction and trajectory prediction, we propose a novel network with future context encoding for the joint prediction of these two tasks. Our approach ranks 1st on two large-scale motion forecasting benchmarks: Argoverse 1 and Argoverse 2.
Abstract:Behavior Tree (BT) planning is crucial for autonomous robot behavior control, yet its application in complex scenarios is hampered by long planning times. Pruning and heuristics are common techniques to accelerate planning, but it is difficult to design general pruning strategies and heuristic functions for BT planning problems. This paper proposes improving BT planning efficiency for everyday service robots leveraging commonsense reasoning provided by Large Language Models (LLMs), leading to model-free pre-planning action space pruning and heuristic generation. This approach takes advantage of the modularity and interpretability of BT nodes, represented by predicate logic, to enable LLMs to predict the task-relevant action predicates and objects, and even the optimal path, without an explicit action model. We propose the Heuristic Optimal Behavior Tree Expansion Algorithm (HOBTEA) with two heuristic variants and provide a formal comparison and discussion of their efficiency and optimality. We introduce a learnable and transferable commonsense library to enhance the LLM's reasoning performance without fine-tuning. The action space expansion based on the commonsense library can further increase the success rate of planning. Experiments show the theoretical bounds of commonsense pruning and heuristic, and demonstrate the actual performance of LLM learning and reasoning with the commonsense library. Results in four datasets showcase the practical effectiveness of our approach in everyday service robot applications.
Abstract:Robots executing tasks following human instructions in domestic or industrial environments essentially require both adaptability and reliability. Behavior Tree (BT) emerges as an appropriate control architecture for these scenarios due to its modularity and reactivity. Existing BT generation methods, however, either do not involve interpreting natural language or cannot theoretically guarantee the BTs' success. This paper proposes a two-stage framework for BT generation, which first employs large language models (LLMs) to interpret goals from high-level instructions, then constructs an efficient goal-specific BT through the Optimal Behavior Tree Expansion Algorithm (OBTEA). We represent goals as well-formed formulas in first-order logic, effectively bridging intent understanding and optimal behavior planning. Experiments in the service robot validate the proficiency of LLMs in producing grammatically correct and accurately interpreted goals, demonstrate OBTEA's superiority over the baseline BT Expansion algorithm in various metrics, and finally confirm the practical deployability of our framework. The project website is https://dids-ei.github.io/Project/LLM-OBTEA/.
Abstract:Optimizing the morphologies and the controllers that adapt to various tasks is a critical issue in the field of robot design, aka. embodied intelligence. Previous works typically model it as a joint optimization problem and use search-based methods to find the optimal solution in the morphology space. However, they ignore the implicit knowledge of task-to-morphology mapping which can directly inspire robot design. For example, flipping heavier boxes tends to require more muscular robot arms. This paper proposes a novel and general differentiable task-inspired framework for contact-aware robot design called Task2Morph. We abstract task features highly related to task performance and use them to build a task-to-morphology mapping. Further, we embed the mapping into a differentiable robot design process, where the gradient information is leveraged for both the mapping learning and the whole optimization. The experiments are conducted on three scenarios, and the results validate that Task2Morph outperforms DiffHand, which lacks a task-inspired morphology module, in terms of efficiency and effectiveness.
Abstract:Given data with noisy labels, over-parameterized deep networks suffer overfitting mislabeled data, resulting in poor generalization. The memorization effect of deep networks shows that although the networks have the ability to memorize all noisy data, they would first memorize clean training data, and then gradually memorize mislabeled training data. A simple and effective method that exploits the memorization effect to combat noisy labels is early stopping. However, early stopping cannot distinguish the memorization of clean data and mislabeled data, resulting in the network still inevitably overfitting mislabeled data in the early training stage.In this paper, to decouple the memorization of clean data and mislabeled data, and further reduce the side effect of mislabeled data, we perform additive decomposition on network parameters. Namely, all parameters are additively decomposed into two groups, i.e., parameters $\mathbf{w}$ are decomposed as $\mathbf{w}=\bm{\sigma}+\bm{\gamma}$. Afterward, the parameters $\bm{\sigma}$ are considered to memorize clean data, while the parameters $\bm{\gamma}$ are considered to memorize mislabeled data. Benefiting from the memorization effect, the updates of the parameters $\bm{\sigma}$ are encouraged to fully memorize clean data in early training, and then discouraged with the increase of training epochs to reduce interference of mislabeled data. The updates of the parameters $\bm{\gamma}$ are the opposite. In testing, only the parameters $\bm{\sigma}$ are employed to enhance generalization. Extensive experiments on both simulated and real-world benchmarks confirm the superior performance of our method.
Abstract:Recently, formal verification of deep neural networks (DNNs) has garnered considerable attention, and over-approximation based methods have become popular due to their effectiveness and efficiency. However, these strategies face challenges in addressing the "unknown dilemma" concerning whether the exact output region or the introduced approximation error violates the property in question. To address this, this paper introduces the UR4NNV verification framework, which utilizes under-approximation reachability analysis for DNN verification for the first time. UR4NNV focuses on DNNs with Rectified Linear Unit (ReLU) activations and employs a binary tree branch-based under-approximation algorithm. In each epoch, UR4NNV under-approximates a sub-polytope of the reachable set and verifies this polytope against the given property. Through a trial-and-error approach, UR4NNV effectively falsifies DNN properties while providing confidence levels when reaching verification epoch bounds and failing falsifying properties. Experimental comparisons with existing verification methods demonstrate the effectiveness and efficiency of UR4NNV, significantly reducing the impact of the "unknown dilemma".
Abstract:In the face of rapid advances in medical imaging, cross-domain adaptive medical image detection is challenging due to the differences in lesion representations across various medical imaging technologies. To address this issue, we draw inspiration from large language models to propose EAFP-Med, an efficient adaptive feature processing module based on prompts for medical image detection. EAFP-Med can efficiently extract lesion features of different scales from a diverse range of medical images based on prompts while being flexible and not limited by specific imaging techniques. Furthermore, it serves as a feature preprocessing module that can be connected to any model front-end to enhance the lesion features in input images. Moreover, we propose a novel adaptive disease detection model named EAFP-Med ST, which utilizes the Swin Transformer V2 - Tiny (SwinV2-T) as its backbone and connects it to EAFP-Med. We have compared our method to nine state-of-the-art methods. Experimental results demonstrate that EAFP-Med ST achieves the best performance on all three datasets (chest X-ray images, cranial magnetic resonance imaging images, and skin images). EAFP-Med can efficiently extract lesion features from various medical images based on prompts, enhancing the model's performance. This holds significant potential for improving medical image analysis and diagnosis.
Abstract:Adapting models deployed to test distributions can mitigate the performance degradation caused by distribution shifts. However, privacy concerns may render model parameters inaccessible. One promising approach involves utilizing zeroth-order optimization (ZOO) to train a data adaptor to adapt the test data to fit the deployed models. Nevertheless, the data adaptor trained with ZOO typically brings restricted improvements due to the potential corruption of data features caused by the data adaptor. To address this issue, we revisit ZOO in the context of test-time data adaptation. We find that the issue directly stems from the unreliable estimation of the gradients used to optimize the data adaptor, which is inherently due to the unreliable nature of the pseudo-labels assigned to the test data. Based on this observation, we propose pseudo-label-robust data adaptation (SODA) to improve the performance of data adaptation. Specifically, SODA leverages high-confidence predicted labels as reliable labels to optimize the data adaptor with ZOO for label prediction. For data with low-confidence predictions, SODA encourages the adaptor to preserve data information to mitigate data corruption. Empirical results indicate that SODA can significantly enhance the performance of deployed models in the presence of distribution shifts without requiring access to model parameters.