Abstract:Partial-label learning (PLL) relies on a key assumption that the true label of each training example must be in the candidate label set. This restrictive assumption may be violated in complex real-world scenarios, and thus the true label of some collected examples could be unexpectedly outside the assigned candidate label set. In this paper, we term the examples whose true label is outside the candidate label set OOC (out-of-candidate) examples, and pioneer a new PLL study to learn with OOC examples. We consider two types of OOC examples in reality, i.e., the closed-set/open-set OOC examples whose true label is inside/outside the known label space. To solve this new PLL problem, we first calculate the wooden cross-entropy loss from candidate and non-candidate labels respectively, and dynamically differentiate the two types of OOC examples based on specially designed criteria. Then, for closed-set OOC examples, we conduct reversed label disambiguation in the non-candidate label set; for open-set OOC examples, we leverage them for training by utilizing an effective regularization strategy that dynamically assigns random candidate labels from the candidate label set. In this way, the two types of OOC examples can be differentiated and further leveraged for model training. Extensive experiments demonstrate that our proposed method outperforms state-of-the-art PLL methods.
Abstract:Semantic segmentation, which aims to acquire a detailed understanding of images, is an essential issue in computer vision. However, in practical scenarios, new categories that are different from the categories in training usually appear. Since it is impractical to collect labeled data for all categories, how to conduct zero-shot learning in semantic segmentation establishes an important problem. Although the attribute embedding of categories can promote effective knowledge transfer across different categories, the prediction of segmentation network reveals obvious bias to seen categories. In this paper, we propose an easy-to-implement transductive approach to alleviate the prediction bias in zero-shot semantic segmentation. Our method assumes that both the source images with full pixel-level labels and unlabeled target images are available during training. To be specific, the source images are used to learn the relationship between visual images and semantic embeddings, while the target images are used to alleviate the prediction bias towards seen categories. We conduct comprehensive experiments on diverse split s of the PASCAL dataset. The experimental results clearly demonstrate the effectiveness of our method.
Abstract:Zero-Shot Learning (ZSL) aims to learn recognition models for recognizing new classes without labeled data. In this work, we propose a novel approach dubbed Transferrable Semantic-Visual Relation (TSVR) to facilitate the cross-category transfer in transductive ZSL. Our approach draws on an intriguing insight connecting two challenging problems, i.e. domain adaptation and zero-shot learning. Domain adaptation aims to transfer knowledge across two different domains (i.e., source domain and target domain) that share the identical task/label space. For ZSL, the source and target domains have different tasks/label spaces. Hence, ZSL is usually considered as a more difficult transfer setting compared with domain adaptation. Although the existing ZSL approaches use semantic attributes of categories to bridge the source and target domains, their performances are far from satisfactory due to the large domain gap between different categories. In contrast, our method directly transforms ZSL into a domain adaptation task through redrawing ZSL as predicting the similarity/dissimilarity labels for the pairs of semantic attributes and visual features. For this redrawn domain adaptation problem, we propose to use a domain-specific batch normalization component to reduce the domain discrepancy of semantic-visual pairs. Experimental results over diverse ZSL benchmarks clearly demonstrate the superiority of our method.