Nanyang Technological University
Abstract:Purpose: Automatic and accurate segmentation of fundus vessel images has become an essential prerequisite for computer-aided diagnosis of ophthalmic diseases such as diabetes mellitus. The task of high-precision retinal vessel segmentation still faces difficulties due to the low contrast between the branch ends of retinal vessels and the background, the long and thin vessel span, and the variable morphology of the optic disc and optic cup in fundus vessel images. Methods: We propose a more advanced U-shaped architecture for a hybrid Transformer and CNN: TransUNext, which integrates an Efficient Self-attention Mechanism into the encoder and decoder of U-Net to capture both local features and global dependencies with minimal computational overhead. Meanwhile, the Global Multi-Scale Fusion (GMSF) module is further introduced to upgrade skip-connections, fuse high-level semantic and low-level detailed information, and eliminate high- and low-level semantic differences. Inspired by ConvNeXt, TransNeXt Block is designed to optimize the computational complexity of each base block in U-Net and avoid the information loss caused by the compressed dimension when the information is converted between the feature spaces of different dimensions. Results: We evaluated the proposed method on four public datasets DRIVE, STARE, CHASE-DB1, and HRF. In the experimental results, the AUC (area under the ROC curve) values were 0.9867, 0.9869, 0.9910, and 0.9887, which exceeded the other state-of-the-art.
Abstract:Discovering user preferences across different domains is pivotal in cross-domain recommendation systems, particularly when platforms lack comprehensive user-item interactive data. The limited presence of shared users often hampers the effective modeling of common preferences. While leveraging shared items' attributes, such as category and popularity, can enhance cross-domain recommendation performance, the scarcity of shared items between domains has limited research in this area. To address this, we propose a Coherence-guided Preference Disentanglement (CoPD) method aimed at improving cross-domain recommendation by i) explicitly extracting shared item attributes to guide the learning of shared user preferences and ii) disentangling these preferences to identify specific user interests transferred between domains. CoPD introduces coherence constraints on item embeddings of shared and specific domains, aiding in extracting shared attributes. Moreover, it utilizes these attributes to guide the disentanglement of user preferences into separate embeddings for interest and conformity through a popularity-weighted loss. Experiments conducted on real-world datasets demonstrate the superior performance of our proposed CoPD over existing competitive baselines, highlighting its effectiveness in enhancing cross-domain recommendation performance.
Abstract:In the realm of stochastic human motion prediction (SHMP), researchers have often turned to generative models like GANS, VAEs and diffusion models. However, most previous approaches have struggled to accurately predict motions that are both realistic and coherent with past motion due to a lack of guidance on the latent distribution. In this paper, we introduce Semantic Latent Directions (SLD) as a solution to this challenge, aiming to constrain the latent space to learn meaningful motion semantics and enhance the accuracy of SHMP. SLD defines a series of orthogonal latent directions and represents the hypothesis of future motion as a linear combination of these directions. By creating such an information bottleneck, SLD excels in capturing meaningful motion semantics, thereby improving the precision of motion predictions. Moreover, SLD offers controllable prediction capabilities by adjusting the coefficients of the latent directions during the inference phase. Expanding on SLD, we introduce a set of motion queries to enhance the diversity of predictions. By aligning these motion queries with the SLD space, SLD is further promoted to more accurate and coherent motion predictions. Through extensive experiments conducted on widely used benchmarks, we showcase the superiority of our method in accurately predicting motions while maintaining a balance of realism and diversity. Our code and pretrained models are available at https://github.com/GuoweiXu368/SLD-HMP.
Abstract:Personalized text-to-image models allow users to generate varied styles of images (specified with a sentence) for an object (specified with a set of reference images). While remarkable results have been achieved using diffusion-based generation models, the visual structure and details of the object are often unexpectedly changed during the diffusion process. One major reason is that these diffusion-based approaches typically adopt a simple reconstruction objective during training, which can hardly enforce appropriate structural consistency between the generated and the reference images. To this end, in this paper, we design a novel reinforcement learning framework by utilizing the deterministic policy gradient method for personalized text-to-image generation, with which various objectives, differential or even non-differential, can be easily incorporated to supervise the diffusion models to improve the quality of the generated images. Experimental results on personalized text-to-image generation benchmark datasets demonstrate that our proposed approach outperforms existing state-of-the-art methods by a large margin on visual fidelity while maintaining text-alignment. Our code is available at: \url{https://github.com/wfanyue/DPG-T2I-Personalization}.
Abstract:Existing view-based methods excel at recognizing 3D objects from predefined viewpoints, but their exploration of recognition under arbitrary views is limited. This is a challenging and realistic setting because each object has different viewpoint positions and quantities, and their poses are not aligned. However, most view-based methods, which aggregate multiple view features to obtain a global feature representation, hard to address 3D object recognition under arbitrary views. Due to the unaligned inputs from arbitrary views, it is challenging to robustly aggregate features, leading to performance degradation. In this paper, we introduce a novel Part-aware Network (PANet), which is a part-based representation, to address these issues. This part-based representation aims to localize and understand different parts of 3D objects, such as airplane wings and tails. It has properties such as viewpoint invariance and rotation robustness, which give it an advantage in addressing the 3D object recognition problem under arbitrary views. Our results on benchmark datasets clearly demonstrate that our proposed method outperforms existing view-based aggregation baselines for the task of 3D object recognition under arbitrary views, even surpassing most fixed viewpoint methods.
Abstract:The interactions between human and objects are important for recognizing object-centric actions. Existing methods usually adopt a two-stage pipeline, where object proposals are first detected using a pretrained detector, and then are fed to an action recognition model for extracting video features and learning the object relations for action recognition. However, since the action prior is unknown in the object detection stage, important objects could be easily overlooked, leading to inferior action recognition performance. In this paper, we propose an end-to-end object-centric action recognition framework that simultaneously performs Detection And Interaction Reasoning in one stage. Particularly, after extracting video features with a base network, we create three modules for concurrent object detection and interaction reasoning. First, a Patch-based Object Decoder generates proposals from video patch tokens. Then, an Interactive Object Refining and Aggregation identifies important objects for action recognition, adjusts proposal scores based on position and appearance, and aggregates object-level info into a global video representation. Lastly, an Object Relation Modeling module encodes object relations. These three modules together with the video feature extractor can be trained jointly in an end-to-end fashion, thus avoiding the heavy reliance on an off-the-shelf object detector, and reducing the multi-stage training burden. We conduct experiments on two datasets, Something-Else and Ikea-Assembly, to evaluate the performance of our proposed approach on conventional, compositional, and few-shot action recognition tasks. Through in-depth experimental analysis, we show the crucial role of interactive objects in learning for action recognition, and we can outperform state-of-the-art methods on both datasets.
Abstract:In this work, we target the task of text-driven style transfer in the context of text-to-image (T2I) diffusion models. The main challenge is consistent structure preservation while enabling effective style transfer effects. The past approaches in this field directly concatenate the content and style prompts for a prompt-level style injection, leading to unavoidable structure distortions. In this work, we propose a novel solution to the text-driven style transfer task, namely, Adaptive Style Incorporation~(ASI), to achieve fine-grained feature-level style incorporation. It consists of the Siamese Cross-Attention~(SiCA) to decouple the single-track cross-attention to a dual-track structure to obtain separate content and style features, and the Adaptive Content-Style Blending (AdaBlending) module to couple the content and style information from a structure-consistent manner. Experimentally, our method exhibits much better performance in both structure preservation and stylized effects.
Abstract:We introduced SSR, which utilizes SAM (segment-anything) as a strong regularizer during training, to greatly enhance the robustness of the image encoder for handling various domains. Specifically, given the fact that SAM is pre-trained with a large number of images over the internet, which cover a diverse variety of domains, the feature encoding extracted by the SAM is obviously less dependent on specific domains when compared to the traditional ImageNet pre-trained image encoder. Meanwhile, the ImageNet pre-trained image encoder is still a mature choice of backbone for the semantic segmentation task, especially when the SAM is category-irrelevant. As a result, our SSR provides a simple yet highly effective design. It uses the ImageNet pre-trained image encoder as the backbone, and the intermediate feature of each stage (ie there are 4 stages in MiT-B5) is regularized by SAM during training. After extensive experimentation on GTA5$\rightarrow$Cityscapes, our SSR significantly improved performance over the baseline without introducing any extra inference overhead.
Abstract:One of the ultimate goals of representation learning is to achieve compactness within a class and well-separability between classes. Many outstanding metric-based and prototype-based methods following the Expectation-Maximization paradigm, have been proposed for this objective. However, they inevitably introduce biases into the learning process, particularly with long-tail distributed training data. In this paper, we reveal that the class prototype is not necessarily to be derived from training features and propose a novel perspective to use pre-defined class anchors serving as feature centroid to unidirectionally guide feature learning. However, the pre-defined anchors may have a large semantic distance from the pixel features, which prevents them from being directly applied. To address this issue and generate feature centroid independent from feature learning, a simple yet effective Semantic Anchor Regularization (SAR) is proposed. SAR ensures the interclass separability of semantic anchors in the semantic space by employing a classifier-aware auxiliary cross-entropy loss during training via disentanglement learning. By pulling the learned features to these semantic anchors, several advantages can be attained: 1) the intra-class compactness and naturally inter-class separability, 2) induced bias or errors from feature learning can be avoided, and 3) robustness to the long-tailed problem. The proposed SAR can be used in a plug-and-play manner in the existing models. Extensive experiments demonstrate that the SAR performs better than previous sophisticated prototype-based methods. The implementation is available at https://github.com/geyanqi/SAR.
Abstract:Unsupervised cross-domain action recognition aims at adapting the model trained on an existing labeled source domain to a new unlabeled target domain. Most existing methods solve the task by directly aligning the feature distributions of source and target domains. However, this would cause negative transfer during domain adaptation due to some negative training samples in both domains. In the source domain, some training samples are of low-relevance to target domain due to the difference in viewpoints, action styles, etc. In the target domain, there are some ambiguous training samples that can be easily classified as another type of action under the case of source domain. The problem of negative transfer has been explored in cross-domain object detection, while it remains under-explored in cross-domain action recognition. Therefore, we propose a Multi-modal Instance Refinement (MMIR) method to alleviate the negative transfer based on reinforcement learning. Specifically, a reinforcement learning agent is trained in both domains for every modality to refine the training data by selecting out negative samples from each domain. Our method finally outperforms several other state-of-the-art baselines in cross-domain action recognition on the benchmark EPIC-Kitchens dataset, which demonstrates the advantage of MMIR in reducing negative transfer.