Abstract:Large language models have demonstrated substantial advancements in reasoning capabilities, particularly through inference-time scaling, as illustrated by models such as OpenAI's o1. However, current Vision-Language Models (VLMs) often struggle to perform systematic and structured reasoning, especially when handling complex visual question-answering tasks. In this work, we introduce LLaVA-o1, a novel VLM designed to conduct autonomous multistage reasoning. Unlike chain-of-thought prompting, LLaVA-o1 independently engages in sequential stages of summarization, visual interpretation, logical reasoning, and conclusion generation. This structured approach enables LLaVA-o1 to achieve marked improvements in precision on reasoning-intensive tasks. To accomplish this, we compile the LLaVA-o1-100k dataset, integrating samples from various visual question answering sources and providing structured reasoning annotations. Besides, we propose an inference-time stage-level beam search method, which enables effective inference-time scaling. Remarkably, with only 100k training samples and a simple yet effective inference time scaling method, LLaVA-o1 not only outperforms its base model by 8.9% on a wide range of multimodal reasoning benchmarks, but also surpasses the performance of larger and even closed-source models, such as Gemini-1.5-pro, GPT-4o-mini, and Llama-3.2-90B-Vision-Instruct.
Abstract:Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks. However, current algorithms suffer from low sample efficiency, limiting their practical applicability. In this work, we present MENTOR, a method that improves both the architecture and optimization of RL agents. Specifically, MENTOR replaces the standard multi-layer perceptron (MLP) with a mixture-of-experts (MoE) backbone, enhancing the agent's ability to handle complex tasks by leveraging modular expert learning to avoid gradient conflicts. Furthermore, MENTOR introduces a task-oriented perturbation mechanism, which heuristically samples perturbation candidates containing task-relevant information, leading to more targeted and effective optimization. MENTOR outperforms state-of-the-art methods across three simulation domains -- DeepMind Control Suite, Meta-World, and Adroit. Additionally, MENTOR achieves an average of 83% success rate on three challenging real-world robotic manipulation tasks including peg insertion, cable routing, and tabletop golf, which significantly surpasses the success rate of 32% from the current strongest model-free visual RL algorithm. These results underscore the importance of sample efficiency in advancing visual RL for real-world robotics. Experimental videos are available at https://suninghuang19.github.io/mentor_page.
Abstract:In the realm of stochastic human motion prediction (SHMP), researchers have often turned to generative models like GANS, VAEs and diffusion models. However, most previous approaches have struggled to accurately predict motions that are both realistic and coherent with past motion due to a lack of guidance on the latent distribution. In this paper, we introduce Semantic Latent Directions (SLD) as a solution to this challenge, aiming to constrain the latent space to learn meaningful motion semantics and enhance the accuracy of SHMP. SLD defines a series of orthogonal latent directions and represents the hypothesis of future motion as a linear combination of these directions. By creating such an information bottleneck, SLD excels in capturing meaningful motion semantics, thereby improving the precision of motion predictions. Moreover, SLD offers controllable prediction capabilities by adjusting the coefficients of the latent directions during the inference phase. Expanding on SLD, we introduce a set of motion queries to enhance the diversity of predictions. By aligning these motion queries with the SLD space, SLD is further promoted to more accurate and coherent motion predictions. Through extensive experiments conducted on widely used benchmarks, we showcase the superiority of our method in accurately predicting motions while maintaining a balance of realism and diversity. Our code and pretrained models are available at https://github.com/GuoweiXu368/SLD-HMP.
Abstract:The varying significance of distinct primitive behaviors during the policy learning process has been overlooked by prior model-free RL algorithms. Leveraging this insight, we explore the causal relationship between different action dimensions and rewards to evaluate the significance of various primitive behaviors during training. We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration. Furthermore, to prevent excessive focus on specific primitive behaviors, we analyze the gradient dormancy phenomenon and introduce a dormancy-guided reset mechanism to further enhance the efficacy of our method. Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks spanning 7 domains compared to model-free RL baselines, which underscores the effectiveness, versatility, and efficient sample efficiency of our approach. Benchmark results and videos are available at https://ace-rl.github.io/.
Abstract:Visual reinforcement learning (RL) has shown promise in continuous control tasks. Despite its progress, current algorithms are still unsatisfactory in virtually every aspect of the performance such as sample efficiency, asymptotic performance, and their robustness to the choice of random seeds. In this paper, we identify a major shortcoming in existing visual RL methods that is the agents often exhibit sustained inactivity during early training, thereby limiting their ability to explore effectively. Expanding upon this crucial observation, we additionally unveil a significant correlation between the agents' inclination towards motorically inactive exploration and the absence of neuronal activity within their policy networks. To quantify this inactivity, we adopt dormant ratio as a metric to measure inactivity in the RL agent's network. Empirically, we also recognize that the dormant ratio can act as a standalone indicator of an agent's activity level, regardless of the received reward signals. Leveraging the aforementioned insights, we introduce DrM, a method that uses three core mechanisms to guide agents' exploration-exploitation trade-offs by actively minimizing the dormant ratio. Experiments demonstrate that DrM achieves significant improvements in sample efficiency and asymptotic performance with no broken seeds (76 seeds in total) across three continuous control benchmark environments, including DeepMind Control Suite, MetaWorld, and Adroit. Most importantly, DrM is the first model-free algorithm that consistently solves tasks in both the Dog and Manipulator domains from the DeepMind Control Suite as well as three dexterous hand manipulation tasks without demonstrations in Adroit, all based on pixel observations.
Abstract:Pre-trained text-to-image generative models can produce diverse, semantically rich, and realistic images from natural language descriptions. Compared with language, images usually convey information with more details and less ambiguity. In this study, we propose Learning from the Void (LfVoid), a method that leverages the power of pre-trained text-to-image models and advanced image editing techniques to guide robot learning. Given natural language instructions, LfVoid can edit the original observations to obtain goal images, such as "wiping" a stain off a table. Subsequently, LfVoid trains an ensembled goal discriminator on the generated image to provide reward signals for a reinforcement learning agent, guiding it to achieve the goal. The ability of LfVoid to learn with zero in-domain training on expert demonstrations or true goal observations (the void) is attributed to the utilization of knowledge from web-scale generative models. We evaluate LfVoid across three simulated tasks and validate its feasibility in the corresponding real-world scenarios. In addition, we offer insights into the key considerations for the effective integration of visual generative models into robot learning workflows. We posit that our work represents an initial step towards the broader application of pre-trained visual generative models in the robotics field. Our project page: https://lfvoid-rl.github.io/.
Abstract:The recent GAN inversion methods have been able to successfully invert the real image input to the corresponding editable latent code in StyleGAN. By combining with the language-vision model (CLIP), some text-driven image manipulation methods are proposed. However, these methods require extra costs to perform optimization for a certain image or a new attribute editing mode. To achieve a more efficient editing method, we propose a new Text-driven image Manipulation framework via Space Alignment (TMSA). The Space Alignment module aims to align the same semantic regions in CLIP and StyleGAN spaces. Then, the text input can be directly accessed into the StyleGAN space and be used to find the semantic shift according to the text description. The framework can support arbitrary image editing mode without additional cost. Our work provides the user with an interface to control the attributes of a given image according to text input and get the result in real time. Ex tensive experiments demonstrate our superior performance over prior works.
Abstract:Task requirements (TRs) writing is an important question type in Key English Test and Preliminary English Test. A TR writing question may include multiple requirements and a high-quality essay must respond to each requirement thoroughly and accurately. However, the limited teacher resources prevent students from getting detailed grading instantly. The majority of existing automatic essay scoring systems focus on giving a holistic score but rarely provide reasons to support it. In this paper, we proposed an end-to-end framework based on machine reading comprehension (MRC) to address this problem to some extent. The framework not only detects whether an essay responds to a requirement question, but clearly marks where the essay answers the question. Our framework consists of three modules: question normalization module, ELECTRA based MRC module and response locating module. We extensively explore state-of-the-art MRC methods. Our approach achieves 0.93 accuracy score and 0.85 F1 score on a real-world educational dataset. To encourage reproducible results, we make our code publicly available at \url{https://github.com/aied2021TRMRC/AIED_2021_TRMRC_code}.
Abstract:Many real-world applications involve the use of Optical Character Recognition (OCR) engines to transform handwritten images into transcripts on which downstream Natural Language Processing (NLP) models are applied. In this process, OCR engines may introduce errors and inputs to downstream NLP models become noisy. Despite that pre-trained models achieve state-of-the-art performance in many NLP benchmarks, we prove that they are not robust to noisy texts generated by real OCR engines. This greatly limits the application of NLP models in real-world scenarios. In order to improve model performance on noisy OCR transcripts, it is natural to train the NLP model on labelled noisy texts. However, in most cases there are only labelled clean texts. Since there is no handwritten pictures corresponding to the text, it is impossible to directly use the recognition model to obtain noisy labelled data. Human resources can be employed to copy texts and take pictures, but it is extremely expensive considering the size of data for model training. Consequently, we are interested in making NLP models intrinsically robust to OCR errors in a low resource manner. We propose a novel robust training framework which 1) employs simple but effective methods to directly simulate natural OCR noises from clean texts and 2) iteratively mines the hard examples from a large number of simulated samples for optimal performance. 3) To make our model learn noise-invariant representations, a stability loss is employed. Experiments on three real-world datasets show that the proposed framework boosts the robustness of pre-trained models by a large margin. We believe that this work can greatly promote the application of NLP models in actual scenarios, although the algorithm we use is simple and straightforward. We make our codes and three datasets publicly available\footnote{https://github.com/tal-ai/Robust-learning-MSSHEM}.
Abstract:Representation learning has been proven to play an important role in the unprecedented success of machine learning models in numerous tasks, such as machine translation, face recognition and recommendation. The majority of existing representation learning approaches often require a large number of consistent and noise-free labels. However, due to various reasons such as budget constraints and privacy concerns, labels are very limited in many real-world scenarios. Directly applying standard representation learning approaches on small labeled data sets will easily run into over-fitting problems and lead to sub-optimal solutions. Even worse, in some domains such as education, the limited labels are usually annotated by multiple workers with diverse expertise, which yields noises and inconsistency in such crowdsourcing settings. In this paper, we propose a novel framework which aims to learn effective representations from limited data with crowdsourced labels. Specifically, we design a grouping based deep neural network to learn embeddings from a limited number of training samples and present a Bayesian confidence estimator to capture the inconsistency among crowdsourced labels. Furthermore, to expedite the training process, we develop a hard example selection procedure to adaptively pick up training examples that are misclassified by the model. Extensive experiments conducted on three real-world data sets demonstrate the superiority of our framework on learning representations from limited data with crowdsourced labels, comparing with various state-of-the-art baselines. In addition, we provide a comprehensive analysis on each of the main components of our proposed framework and also introduce the promising results it achieved in our real production to fully understand the proposed framework.