Abstract:Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks. However, current algorithms suffer from low sample efficiency, limiting their practical applicability. In this work, we present MENTOR, a method that improves both the architecture and optimization of RL agents. Specifically, MENTOR replaces the standard multi-layer perceptron (MLP) with a mixture-of-experts (MoE) backbone, enhancing the agent's ability to handle complex tasks by leveraging modular expert learning to avoid gradient conflicts. Furthermore, MENTOR introduces a task-oriented perturbation mechanism, which heuristically samples perturbation candidates containing task-relevant information, leading to more targeted and effective optimization. MENTOR outperforms state-of-the-art methods across three simulation domains -- DeepMind Control Suite, Meta-World, and Adroit. Additionally, MENTOR achieves an average of 83% success rate on three challenging real-world robotic manipulation tasks including peg insertion, cable routing, and tabletop golf, which significantly surpasses the success rate of 32% from the current strongest model-free visual RL algorithm. These results underscore the importance of sample efficiency in advancing visual RL for real-world robotics. Experimental videos are available at https://suninghuang19.github.io/mentor_page.
Abstract:Detecting 3D keypoints with semantic consistency is widely used in many scenarios such as pose estimation, shape registration and robotics. Currently, most unsupervised 3D keypoint detection methods focus on the rigid-body objects. However, when faced with deformable objects, the keypoints they identify do not preserve semantic consistency well. In this paper, we introduce an innovative unsupervised keypoint detector Key-Grid for both the rigid-body and deformable objects, which is an autoencoder framework. The encoder predicts keypoints and the decoder utilizes the generated keypoints to reconstruct the objects. Unlike previous work, we leverage the identified keypoint in formation to form a 3D grid feature heatmap called grid heatmap, which is used in the decoder section. Grid heatmap is a novel concept that represents the latent variables for grid points sampled uniformly in the 3D cubic space, where these variables are the shortest distance between the grid points and the skeleton connected by keypoint pairs. Meanwhile, we incorporate the information from each layer of the encoder into the decoder section. We conduct an extensive evaluation of Key-Grid on a list of benchmark datasets. Key-Grid achieves the state-of-the-art performance on the semantic consistency and position accuracy of keypoints. Moreover, we demonstrate the robustness of Key-Grid to noise and downsampling. In addition, we achieve SE-(3) invariance of keypoints though generalizing Key-Grid to a SE(3)-invariant backbone.
Abstract:We propose AToM-Bot, a novel task generation and execution framework for proactive robot-human interaction, which leverages the human mental and physical state inference capabilities of the Vision Language Model (VLM) prompted by the Affective Theory of Mind (AToM). Without requiring explicit commands by humans, AToM-Bot proactively generates and follows feasible tasks to improve general human well-being. When around humans, AToM-Bot first detects current human needs based on inferred human states and observations of the surrounding environment. It then generates tasks to fulfill these needs, taking into account its embodied constraints. We designed 16 daily life scenarios spanning 4 common scenes and tasked the same visual stimulus to 59 human subjects and our robot. We used the similarity between human open-ended answers and robot output, and the human satisfaction scores to metric robot performance. AToM-Bot received high human evaluations in need detection (6.42/7, 91.7%), embodied solution (6.15/7, 87.8%) and task execution (6.17/7, 88.1%). We show that AToM-Bot excels in generating and executing feasible plans to fulfill unspoken human needs. Videos and code are available at https://affective-tom-bot.github.io.
Abstract:We present RiEMann, an end-to-end near Real-time SE(3)-Equivariant Robot Manipulation imitation learning framework from scene point cloud input. Compared to previous methods that rely on descriptor field matching, RiEMann directly predicts the target poses of objects for manipulation without any object segmentation. RiEMann learns a manipulation task from scratch with 5 to 10 demonstrations, generalizes to unseen SE(3) transformations and instances of target objects, resists visual interference of distracting objects, and follows the near real-time pose change of the target object. The scalable action space of RiEMann facilitates the addition of custom equivariant actions such as the direction of turning the faucet, which makes articulated object manipulation possible for RiEMann. In simulation and real-world 6-DOF robot manipulation experiments, we test RiEMann on 5 categories of manipulation tasks with a total of 25 variants and show that RiEMann outperforms baselines in both task success rates and SE(3) geodesic distance errors on predicted poses (reduced by 68.6%), and achieves a 5.4 frames per second (FPS) network inference speed. Code and video results are available at https://riemann-web.github.io/.
Abstract:Temporal action segmentation is typically achieved by discovering the dramatic variances in global visual descriptors. In this paper, we explore the merits of local features by proposing the unsupervised framework of Object-centric Temporal Action Segmentation (OTAS). Broadly speaking, OTAS consists of self-supervised global and local feature extraction modules as well as a boundary selection module that fuses the features and detects salient boundaries for action segmentation. As a second contribution, we discuss the pros and cons of existing frame-level and boundary-level evaluation metrics. Through extensive experiments, we find OTAS is superior to the previous state-of-the-art method by $41\%$ on average in terms of our recommended F1 score. Surprisingly, OTAS even outperforms the ground-truth human annotations in the user study. Moreover, OTAS is efficient enough to allow real-time inference.
Abstract:We present ArrayBot, a distributed manipulation system consisting of a $16 \times 16$ array of vertically sliding pillars integrated with tactile sensors, which can simultaneously support, perceive, and manipulate the tabletop objects. Towards generalizable distributed manipulation, we leverage reinforcement learning (RL) algorithms for the automatic discovery of control policies. In the face of the massively redundant actions, we propose to reshape the action space by considering the spatially local action patch and the low-frequency actions in the frequency domain. With this reshaped action space, we train RL agents that can relocate diverse objects through tactile observations only. Surprisingly, we find that the discovered policy can not only generalize to unseen object shapes in the simulator but also transfer to the physical robot without any domain randomization. Leveraging the deployed policy, we present abundant real-world manipulation tasks, illustrating the vast potential of RL on ArrayBot for distributed manipulation.
Abstract:Learning generalizable policies that can adapt to unseen environments remains challenging in visual Reinforcement Learning (RL). Existing approaches try to acquire a robust representation via diversifying the appearances of in-domain observations for better generalization. Limited by the specific observations of the environment, these methods ignore the possibility of exploring diverse real-world image datasets. In this paper, we investigate how a visual RL agent would benefit from the off-the-shelf visual representations. Surprisingly, we find that the early layers in an ImageNet pre-trained ResNet model could provide rather generalizable representations for visual RL. Hence, we propose Pre-trained Image Encoder for Generalizable visual reinforcement learning (PIE-G), a simple yet effective framework that can generalize to the unseen visual scenarios in a zero-shot manner. Extensive experiments are conducted on DMControl Generalization Benchmark, DMControl Manipulation Tasks, Drawer World, and CARLA to verify the effectiveness of PIE-G. Empirical evidence suggests PIE-G improves sample efficiency and significantly outperforms previous state-of-the-art methods in terms of generalization performance. In particular, PIE-G boasts a 55% generalization performance gain on average in the challenging video background setting. Project Page: https://sites.google.com/view/pie-g/home.
Abstract:Can a robot manipulate intra-category unseen objects in arbitrary poses with the help of a mere demonstration of grasping pose on a single object instance? In this paper, we try to address this intriguing challenge by using USEEK, an unsupervised SE(3)-equivariant keypoints method that enjoys alignment across instances in a category, to perform generalizable manipulation. USEEK follows a teacher-student structure to decouple the unsupervised keypoint discovery and SE(3)-equivariant keypoint detection. With USEEK in hand, the robot can infer the category-level task-relevant object frames in an efficient and explainable manner, enabling manipulation of any intra-category objects from and to any poses. Through extensive experiments, we demonstrate that the keypoints produced by USEEK possess rich semantics, thus successfully transferring the functional knowledge from the demonstration object to the novel ones. Compared with other object representations for manipulation, USEEK is more adaptive in the face of large intra-category shape variance, more robust with limited demonstrations, and more efficient at inference time.
Abstract:This is a review on blind image deblurring. First, we formulate the blind image deblurring problem and explain why it is challenging. Next, we bring some psychological and cognitive studies on the way our human vision system deblurs. Then, relying on several previous reviews, we discuss the topic of metrics and datasets, which is non-trivial to blind deblurring. Finally, we introduce some typical optimization-based methods and learning-based methods.
Abstract:Popular node embedding methods such as DeepWalk follow the paradigm of performing random walks on the graph, and then requiring each node to be proximate to those appearing along with it. Though proved to be successful in various tasks, this paradigm reduces a graph with topology to a set of sequential sentences, thus omitting global information. To produce global-aware node embeddings, we propose BiasedWalk, a biased random walk strategy that favors nodes with similar semantics. Empirical evidence suggests BiasedWalk can generally enhance global awareness of the generated embeddings.