College of Artificial Intelligence and Automation, Hohai University
Abstract:Text-based diffusion models have made significant breakthroughs in generating high-quality images and videos from textual descriptions. However, the lengthy sampling time of the denoising process remains a significant bottleneck in practical applications. Previous methods either ignore the statistical relationships between adjacent steps or rely on attention or feature similarity between them, which often only works with specific network structures. To address this issue, we discover a new statistical relationship in the transition operator between adjacent steps, focusing on the relationship of the outputs from the network. This relationship does not impose any requirements on the network structure. Based on this observation, we propose a novel training-free acceleration method called LTC-Accel, which uses the identified relationship to estimate the current transition operator based on adjacent steps. Due to no specific assumptions regarding the network structure, LTC-Accel is applicable to almost all diffusion-based methods and orthogonal to almost all existing acceleration techniques, making it easy to combine with them. Experimental results demonstrate that LTC-Accel significantly speeds up sampling in text-to-image and text-to-video synthesis while maintaining competitive sample quality. Specifically, LTC-Accel achieves a speedup of 1.67-fold in Stable Diffusion v2 and a speedup of 1.55-fold in video generation models. When combined with distillation models, LTC-Accel achieves a remarkable 10-fold speedup in video generation, allowing real-time generation of more than 16FPS.
Abstract:Sixth generation (6G) wireless technology is anticipated to introduce Integrated Sensing and Communication (ISAC) as a transformative paradigm. ISAC unifies wireless communication and RADAR or other forms of sensing to optimize spectral and hardware resources. This paper presents a pioneering framework that leverages ISAC sensing data to enhance beam selection processes in complex indoor environments. By integrating multi-modal transformer models with a multi-agent contextual bandit algorithm, our approach utilizes ISAC sensing data to improve communication performance and achieves high spectral efficiency (SE). Specifically, the multi-modal transformer can capture inter-modal relationships, enhancing model generalization across diverse scenarios. Experimental evaluations on the DeepSense 6G dataset demonstrate that our model outperforms traditional deep reinforcement learning (DRL) methods, achieving superior beam prediction accuracy and adaptability. In the single-user scenario, we achieve an average SE regret improvement of 49.6% as compared to DRL. Furthermore, we employ transfer reinforcement learning to reduce training time and improve model performance in multi-user environments. In the multi-user scenario, this approach enhances the average SE regret, which is a measure to demonstrate how far the learned policy is from the optimal SE policy, by 19.7% compared to training from scratch, even when the latter is trained 100 times longer.
Abstract:Multi-view object tracking (MVOT) offers promising solutions to challenges such as occlusion and target loss, which are common in traditional single-view tracking. However, progress has been limited by the lack of comprehensive multi-view datasets and effective cross-view integration methods. To overcome these limitations, we compiled a Multi-View object Tracking (MVTrack) dataset of 234K high-quality annotated frames featuring 27 distinct objects across various scenes. In conjunction with this dataset, we introduce a novel MVOT method, Multi-View Integration Tracker (MITracker), to efficiently integrate multi-view object features and provide stable tracking outcomes. MITracker can track any object in video frames of arbitrary length from arbitrary viewpoints. The key advancements of our method over traditional single-view approaches come from two aspects: (1) MITracker transforms 2D image features into a 3D feature volume and compresses it into a bird's eye view (BEV) plane, facilitating inter-view information fusion; (2) we propose an attention mechanism that leverages geometric information from fused 3D feature volume to refine the tracking results at each view. MITracker outperforms existing methods on the MVTrack and GMTD datasets, achieving state-of-the-art performance. The code and the new dataset will be available at https://mii-laboratory.github.io/MITracker/.
Abstract:Brain tumors delay the standard preprocessing workflow for further examination. Brain inpainting offers a viable, although difficult, solution for tumor tissue processing, which is necessary to improve the precision of the diagnosis and treatment. Most conventional U-Net-based generative models, however, often face challenges in capturing the complex, nonlinear latent representations inherent in brain imaging. In order to accomplish high-quality healthy brain tissue reconstruction, this work proposes DiffKAN-Inpainting, an innovative method that blends diffusion models with the Kolmogorov-Arnold Networks architecture. During the denoising process, we introduce the RePaint method and tumor information to generate images with a higher fidelity and smoother margin. Both qualitative and quantitative results demonstrate that as compared to the state-of-the-art methods, our proposed DiffKAN-Inpainting inpaints more detailed and realistic reconstructions on the BraTS dataset. The knowledge gained from ablation study provide insights for future research to balance performance with computing cost.
Abstract:Protein-specific large language models (Protein LLMs) are revolutionizing protein science by enabling more efficient protein structure prediction, function annotation, and design. While existing surveys focus on specific aspects or applications, this work provides the first comprehensive overview of Protein LLMs, covering their architectures, training datasets, evaluation metrics, and diverse applications. Through a systematic analysis of over 100 articles, we propose a structured taxonomy of state-of-the-art Protein LLMs, analyze how they leverage large-scale protein sequence data for improved accuracy, and explore their potential in advancing protein engineering and biomedical research. Additionally, we discuss key challenges and future directions, positioning Protein LLMs as essential tools for scientific discovery in protein science. Resources are maintained at https://github.com/Yijia-Xiao/Protein-LLM-Survey.
Abstract:Extensive research has investigated the integration of large language models (LLMs) with knowledge graphs to enhance the reasoning process. However, understanding how models perform reasoning utilizing structured graph knowledge remains underexplored. Most existing approaches rely on LLMs or retrievers to make binary judgments regarding the utilization of knowledge, which is too coarse. Meanwhile, there is still a lack of feedback mechanisms for reflection and correction throughout the entire reasoning path. This paper proposes an Active self-Reflection framework for knowledge Graph reasoning ARG, introducing for the first time an end-to-end training approach to achieve iterative reasoning grounded on structured graphs. Within the framework, the model leverages special tokens to \textit{actively} determine whether knowledge retrieval is necessary, performs \textit{reflective} critique based on the retrieved knowledge, and iteratively reasons over the knowledge graph. The reasoning paths generated by the model exhibit high interpretability, enabling deeper exploration of the model's understanding of structured knowledge. Ultimately, the proposed model achieves outstanding results compared to existing baselines in knowledge graph reasoning tasks.
Abstract:Automated Essay Scoring (AES) plays a crucial role in educational assessment by providing scalable and consistent evaluations of writing tasks. However, traditional AES systems face three major challenges: (1) reliance on handcrafted features that limit generalizability, (2) difficulty in capturing fine-grained traits like coherence and argumentation, and (3) inability to handle multimodal contexts. In the era of Multimodal Large Language Models (MLLMs), we propose EssayJudge, the first multimodal benchmark to evaluate AES capabilities across lexical-, sentence-, and discourse-level traits. By leveraging MLLMs' strengths in trait-specific scoring and multimodal context understanding, EssayJudge aims to offer precise, context-rich evaluations without manual feature engineering, addressing longstanding AES limitations. Our experiments with 18 representative MLLMs reveal gaps in AES performance compared to human evaluation, particularly in discourse-level traits, highlighting the need for further advancements in MLLM-based AES research. Our dataset and code will be available upon acceptance.
Abstract:Dexterous hand teleoperation plays a pivotal role in enabling robots to achieve human-level manipulation dexterity. However, current teleoperation systems often rely on expensive equipment and lack multi-modal sensory feedback, restricting human operators' ability to perceive object properties and perform complex manipulation tasks. To address these limitations, we present DOGlove, a low-cost, precise, and haptic force feedback glove system for teleoperation and manipulation. DoGlove can be assembled in hours at a cost under 600 USD. It features a customized joint structure for 21-DoF motion capture, a compact cable-driven torque transmission mechanism for 5-DoF multidirectional force feedback, and a linear resonate actuator for 5-DoF fingertip haptic feedback. Leveraging action and haptic force retargeting, DOGlove enables precise and immersive teleoperation of dexterous robotic hands, achieving high success rates in complex, contact-rich tasks. We further evaluate DOGlove in scenarios without visual feedback, demonstrating the critical role of haptic force feedback in task performance. In addition, we utilize the collected demonstrations to train imitation learning policies, highlighting the potential and effectiveness of DOGlove. DOGlove's hardware and software system will be fully open-sourced at https://do-glove.github.io/.
Abstract:Deep learning on non-Euclidean domains is important for analyzing complex geometric data that lacks common coordinate systems and familiar Euclidean properties. A central challenge in this field is to define convolution on domains, which inherently possess irregular and non-Euclidean structures. In this work, we introduce Quasi-conformal Convolution (QCC), a novel framework for defining convolution on Riemann surfaces using quasi-conformal theories. Each QCC operator is linked to a specific quasi-conformal mapping, enabling the adjustment of the convolution operation through manipulation of this mapping. By utilizing trainable estimator modules that produce Quasi-conformal mappings, QCC facilitates adaptive and learnable convolution operators that can be dynamically adjusted according to the underlying data structured on Riemann surfaces. QCC unifies a broad range of spatially defined convolutions, facilitating the learning of tailored convolution operators on each underlying surface optimized for specific tasks. Building on this foundation, we develop the Quasi-Conformal Convolutional Neural Network (QCCNN) to address a variety of tasks related to geometric data. We validate the efficacy of QCCNN through the classification of images defined on curvilinear Riemann surfaces, demonstrating superior performance in this context. Additionally, we explore its potential in medical applications, including craniofacial analysis using 3D facial data and lesion segmentation on 3D human faces, achieving enhanced accuracy and reliability.
Abstract:In mmWave wireless networks, signal blockages present a significant challenge due to the susceptibility to environmental moving obstructions. Recently, the availability of visual data has been leveraged to enhance blockage prediction accuracy in mmWave networks. In this work, we propose a Vision Transformer (ViT)-based approach for visual-aided blockage prediction that intelligently switches between mmWave and Sub-6 GHz frequencies to maximize network throughput and maintain reliable connectivity. Given the computational demands of processing visual data, we implement our solution within a hierarchical fog-cloud computing architecture, where fog nodes collaborate with cloud servers to efficiently manage computational tasks. This structure incorporates a generative AI-based compression technique that significantly reduces the volume of visual data transmitted between fog nodes and cloud centers. Our proposed method is tested with the real-world DeepSense 6G dataset, and according to the simulation results, it achieves a blockage prediction accuracy of 92.78% while reducing bandwidth usage by 70.31%.