College of Artificial Intelligence and Automation, Hohai University
Abstract:Efficient wideband spectrum sensing (WSS) is essential for managing spectrum scarcity in wireless communications. However, existing compressed sensing (CS)-based WSS methods require high sampling rates and power consumption, particularly with high-precision analog-to-digital converters (ADCs). Although 1-bit CS with low-precision ADCs can mitigate these demands, most approaches still depend on multi-user cooperation and prior sparsity information, which are often unavailable in WSS scenarios. This paper introduces a non-cooperative WSS method using multicoset sampling with 1-bit ADCs to achieve sub-Nyquist sampling without requiring sparsity knowledge. We analyze the impact of 1-bit quantization on multiband signals, then apply eigenvalue decomposition to isolate the signal subspace from noise, enabling spectrum support estimation without signal reconstruction. This approach provides a power-efficient solution for WSS that eliminates the need for cooperation and prior information.
Abstract:Federated learning (FL) is an innovative distributed artificial intelligence (AI) technique. It has been used for interdisciplinary studies in different fields such as healthcare, marketing and finance. However the application of FL in wireless networks is still in its infancy. In this work, we first overview benefits and concerns when applying FL to wireless networks. Next, we provide a new perspective on existing personalized FL frameworks by analyzing the relationship between cooperation and personalization in these frameworks. Additionally, we discuss the possibility of tuning the cooperation level with a choice-based approach. Our choice-based FL approach is a flexible and safe FL framework that allows participants to lower the level of cooperation when they feel unsafe or unable to benefit from the cooperation. In this way, the choice-based FL framework aims to address the safety and fairness concerns in FL and protect participants from malicious attacks.
Abstract:Knowledge Graph (KG) is playing an increasingly important role in various AI systems. For e-commerce, an efficient and low-cost automated knowledge graph construction method is the foundation of enabling various successful downstream applications. In this paper, we propose a novel method for constructing structured product knowledge graphs from raw product images. The method cooperatively leverages recent advances in the vision-language model (VLM) and large language model (LLM), fully automating the process and allowing timely graph updates. We also present a human-annotated e-commerce product dataset for benchmarking product property extraction in knowledge graph construction. Our method outperforms our baseline in all metrics and evaluated properties, demonstrating its effectiveness and bright usage potential.
Abstract:Embedding retrieval aims to learn a shared semantic representation space for both queries and items, thus enabling efficient and effective item retrieval using approximate nearest neighbor (ANN) algorithms. In current industrial practice, retrieval systems typically retrieve a fixed number of items for different queries, which actually leads to insufficient retrieval (low recall) for head queries and irrelevant retrieval (low precision) for tail queries. Mostly due to the trend of frequentist approach to loss function designs, till now there is no satisfactory solution to holistically address this challenge in the industry. In this paper, we move away from the frequentist approach, and take a novel \textbf{p}robabilistic approach to \textbf{e}mbedding \textbf{b}ased \textbf{r}etrieval (namely \textbf{pEBR}) by learning the item distribution for different queries, which enables a dynamic cosine similarity threshold calculated by the probabilistic cumulative distribution function (CDF) value. The experimental results show that our approach improves both the retrieval precision and recall significantly. Ablation studies also illustrate how the probabilistic approach is able to capture the differences between head and tail queries.
Abstract:Beam management is an important technique to improve signal strength and reduce interference in wireless communication systems. Recently, there has been increasing interest in using diverse sensing modalities for beam management. However, it remains a big challenge to process multi-modal data efficiently and extract useful information. On the other hand, the recently emerging multi-modal transformer (MMT) is a promising technique that can process multi-modal data by capturing long-range dependencies. While MMT is highly effective in handling multi-modal data and providing robust beam management, integrating reinforcement learning (RL) further enhances their adaptability in dynamic environments. In this work, we propose a two-step beam management method by combining MMT with RL for dynamic beam index prediction. In the first step, we divide available beam indices into several groups and leverage MMT to process diverse data modalities to predict the optimal beam group. In the second step, we employ RL for fast beam decision-making within each group, which in return maximizes throughput. Our proposed framework is tested on a 6G dataset. In this testing scenario, it achieves higher beam prediction accuracy and system throughput compared to both the MMT-only based method and the RL-only based method.
Abstract:Discrete diffusion models have achieved success in tasks like image generation and masked language modeling but face limitations in controlled content editing. We introduce DICE (Discrete Inversion for Controllable Editing), the first approach to enable precise inversion for discrete diffusion models, including multinomial diffusion and masked generative models. By recording noise sequences and masking patterns during the reverse diffusion process, DICE enables accurate reconstruction and flexible editing of discrete data without the need for predefined masks or attention manipulation. We demonstrate the effectiveness of DICE across both image and text domains, evaluating it on models such as VQ-Diffusion, Paella, and RoBERTa. Our results show that DICE preserves high data fidelity while enhancing editing capabilities, offering new opportunities for fine-grained content manipulation in discrete spaces. For project webpage, see https://hexiaoxiao-cs.github.io/DICE/.
Abstract:In high-energy particle physics, extracting information from complex detector signals is crucial for energy reconstruction. Recent advancements involve using deep learning to process calorimeter images from various sub-detectors in experiments like the Large Hadron Collider (LHC) for energy map reconstruction. This paper compares classical algorithms\-MLP, CNN, U-Net, and RNN\-with variants that include self-attention and 3D convolution modules to evaluate their effectiveness in reconstructing the initial energy distribution. Additionally, a test dataset of jet events is utilized to analyze and compare models' performance in handling anomalous high-energy events. The analysis highlights the effectiveness of deep learning techniques for energy image reconstruction and explores their potential in this area.
Abstract:In generative modeling, tokenization simplifies complex data into compact, structured representations, creating a more efficient, learnable space. For high-dimensional visual data, it reduces redundancy and emphasizes key features for high-quality generation. Current visual tokenization methods rely on a traditional autoencoder framework, where the encoder compresses data into latent representations, and the decoder reconstructs the original input. In this work, we offer a new perspective by proposing denoising as decoding, shifting from single-step reconstruction to iterative refinement. Specifically, we replace the decoder with a diffusion process that iteratively refines noise to recover the original image, guided by the latents provided by the encoder. We evaluate our approach by assessing both reconstruction (rFID) and generation quality (FID), comparing it to state-of-the-art autoencoding approach. We hope this work offers new insights into integrating iterative generation and autoencoding for improved compression and generation.
Abstract:In percutaneous pelvic trauma surgery, accurate placement of Kirschner wires (K-wires) is crucial to ensure effective fracture fixation and avoid complications due to breaching the cortical bone along an unsuitable trajectory. Surgical navigation via mixed reality (MR) can help achieve precise wire placement in a low-profile form factor. Current approaches in this domain are as yet unsuitable for real-world deployment because they fall short of guaranteeing accurate visual feedback due to uncontrolled bending of the wire. To ensure accurate feedback, we introduce StraightTrack, an MR navigation system designed for percutaneous wire placement in complex anatomy. StraightTrack features a marker body equipped with a rigid access cannula that mitigates wire bending due to interactions with soft tissue and a covered bony surface. Integrated with an Optical See-Through Head-Mounted Display (OST HMD) capable of tracking the cannula body, StraightTrack offers real-time 3D visualization and guidance without external trackers, which are prone to losing line-of-sight. In phantom experiments with two experienced orthopedic surgeons, StraightTrack improves wire placement accuracy, achieving the ideal trajectory within $5.26 \pm 2.29$ mm and $2.88 \pm 1.49$ degree, compared to over 12.08 mm and 4.07 degree for comparable methods. As MR navigation systems continue to mature, StraightTrack realizes their potential for internal fracture fixation and other percutaneous orthopedic procedures.
Abstract:SimCLR is one of the most popular contrastive learning methods for vision tasks. It pre-trains deep neural networks based on a large amount of unlabeled data by teaching the model to distinguish between positive and negative pairs of augmented images. It is believed that SimCLR can pre-train a deep neural network to learn efficient representations that can lead to a better performance of future supervised fine-tuning. Despite its effectiveness, our theoretical understanding of the underlying mechanisms of SimCLR is still limited. In this paper, we theoretically introduce a case study of the SimCLR method. Specifically, we consider training a two-layer convolutional neural network (CNN) to learn a toy image data model. We show that, under certain conditions on the number of labeled data, SimCLR pre-training combined with supervised fine-tuning achieves almost optimal test loss. Notably, the label complexity for SimCLR pre-training is far less demanding compared to direct training on supervised data. Our analysis sheds light on the benefits of SimCLR in learning with fewer labels.